NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fnasrn GIF version

Theorem fnasrn 5418
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
fnasrn (F Fn AF = ran {x, y (x A y = x, (Fx))})
Distinct variable groups:   x,y,A   x,F,y

Proof of Theorem fnasrn
Dummy variables w z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fndm 5183 . . . . . 6 (F Fn A → dom F = A)
2 opeldm 4911 . . . . . . 7 (z, w Fz dom F)
3 eleq2 2414 . . . . . . 7 (dom F = A → (z dom Fz A))
42, 3syl5ib 210 . . . . . 6 (dom F = A → (z, w Fz A))
51, 4syl 15 . . . . 5 (F Fn A → (z, w Fz A))
6 eleq1 2413 . . . . . . . . 9 (x = z → (x Az A))
76biimpcd 215 . . . . . . . 8 (x A → (x = zz A))
87adantrd 454 . . . . . . 7 (x A → ((x = z (Fx) = w) → z A))
98rexlimiv 2733 . . . . . 6 (x A (x = z (Fx) = w) → z A)
109a1i 10 . . . . 5 (F Fn A → (x A (x = z (Fx) = w) → z A))
11 fveq2 5329 . . . . . . . . . 10 (x = z → (Fx) = (Fz))
1211eqeq1d 2361 . . . . . . . . 9 (x = z → ((Fx) = w ↔ (Fz) = w))
1312ceqsrexv 2973 . . . . . . . 8 (z A → (x A (x = z (Fx) = w) ↔ (Fz) = w))
1413adantl 452 . . . . . . 7 ((F Fn A z A) → (x A (x = z (Fx) = w) ↔ (Fz) = w))
15 fnopfvb 5360 . . . . . . 7 ((F Fn A z A) → ((Fz) = wz, w F))
1614, 15bitr2d 245 . . . . . 6 ((F Fn A z A) → (z, w Fx A (x = z (Fx) = w)))
1716ex 423 . . . . 5 (F Fn A → (z A → (z, w Fx A (x = z (Fx) = w))))
185, 10, 17pm5.21ndd 343 . . . 4 (F Fn A → (z, w Fx A (x = z (Fx) = w)))
19 vex 2863 . . . . . 6 z V
20 vex 2863 . . . . . 6 w V
2119, 20opex 4589 . . . . 5 z, w V
22 eqeq1 2359 . . . . . . 7 (y = z, w → (y = x, (Fx)z, w = x, (Fx)))
23 eqcom 2355 . . . . . . . 8 (z, w = x, (Fx)x, (Fx) = z, w)
24 opth 4603 . . . . . . . 8 (x, (Fx) = z, w ↔ (x = z (Fx) = w))
2523, 24bitri 240 . . . . . . 7 (z, w = x, (Fx) ↔ (x = z (Fx) = w))
2622, 25syl6bb 252 . . . . . 6 (y = z, w → (y = x, (Fx) ↔ (x = z (Fx) = w)))
2726rexbidv 2636 . . . . 5 (y = z, w → (x A y = x, (Fx)x A (x = z (Fx) = w)))
2821, 27elab 2986 . . . 4 (z, w {y x A y = x, (Fx)} ↔ x A (x = z (Fx) = w))
2918, 28syl6bbr 254 . . 3 (F Fn A → (z, w Fz, w {y x A y = x, (Fx)}))
3029eqrelrdv 4853 . 2 (F Fn AF = {y x A y = x, (Fx)})
31 rnopab2 4969 . 2 ran {x, y (x A y = x, (Fx))} = {y x A y = x, (Fx)}
3230, 31syl6eqr 2403 1 (F Fn AF = ran {x, y (x A y = x, (Fx))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  cop 4562  {copab 4623  dom cdm 4773  ran crn 4774   Fn wfn 4777  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator