New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cadrot | GIF version |
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadrot | ⊢ (cadd(φ, ψ, χ) ↔ cadd(ψ, χ, φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadcoma 1395 | . 2 ⊢ (cadd(φ, ψ, χ) ↔ cadd(ψ, φ, χ)) | |
2 | cadcomb 1396 | . 2 ⊢ (cadd(ψ, φ, χ) ↔ cadd(ψ, χ, φ)) | |
3 | 1, 2 | bitri 240 | 1 ⊢ (cadd(φ, ψ, χ) ↔ cadd(ψ, χ, φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-xor 1305 df-cad 1381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |