NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cadrot GIF version

Theorem cadrot 1397
Description: Rotation law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadrot (cadd(φ, ψ, χ) ↔ cadd(ψ, χ, φ))

Proof of Theorem cadrot
StepHypRef Expression
1 cadcoma 1395 . 2 (cadd(φ, ψ, χ) ↔ cadd(ψ, φ, χ))
2 cadcomb 1396 . 2 (cadd(ψ, φ, χ) ↔ cadd(ψ, χ, φ))
31, 2bitri 240 1 (cadd(φ, ψ, χ) ↔ cadd(ψ, χ, φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-xor 1305  df-cad 1381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator