New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > calemes | GIF version |
Description: "Calemes", one of the syllogisms of Aristotelian logic. All φ is ψ, and no ψ is χ, therefore no χ is φ. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
calemes.maj | ⊢ ∀x(φ → ψ) |
calemes.min | ⊢ ∀x(ψ → ¬ χ) |
Ref | Expression |
---|---|
calemes | ⊢ ∀x(χ → ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | calemes.min | . . . . 5 ⊢ ∀x(ψ → ¬ χ) | |
2 | 1 | spi 1753 | . . . 4 ⊢ (ψ → ¬ χ) |
3 | 2 | con2i 112 | . . 3 ⊢ (χ → ¬ ψ) |
4 | calemes.maj | . . . 4 ⊢ ∀x(φ → ψ) | |
5 | 4 | spi 1753 | . . 3 ⊢ (φ → ψ) |
6 | 3, 5 | nsyl 113 | . 2 ⊢ (χ → ¬ φ) |
7 | 6 | ax-gen 1546 | 1 ⊢ ∀x(χ → ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |