| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > calemes | GIF version | ||
| Description: "Calemes", one of the syllogisms of Aristotelian logic. All φ is ψ, and no ψ is χ, therefore no χ is φ. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
| Ref | Expression |
|---|---|
| calemes.maj | ⊢ ∀x(φ → ψ) |
| calemes.min | ⊢ ∀x(ψ → ¬ χ) |
| Ref | Expression |
|---|---|
| calemes | ⊢ ∀x(χ → ¬ φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | calemes.min | . . . . 5 ⊢ ∀x(ψ → ¬ χ) | |
| 2 | 1 | spi 1753 | . . . 4 ⊢ (ψ → ¬ χ) |
| 3 | 2 | con2i 112 | . . 3 ⊢ (χ → ¬ ψ) |
| 4 | calemes.maj | . . . 4 ⊢ ∀x(φ → ψ) | |
| 5 | 4 | spi 1753 | . . 3 ⊢ (φ → ψ) |
| 6 | 3, 5 | nsyl 113 | . 2 ⊢ (χ → ¬ φ) |
| 7 | 6 | ax-gen 1546 | 1 ⊢ ∀x(χ → ¬ φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |