NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  calemes GIF version

Theorem calemes 2319
Description: "Calemes", one of the syllogisms of Aristotelian logic. All φ is ψ, and no ψ is χ, therefore no χ is φ. (In Aristotelian notation, AEE-4: PaM and MeS therefore SeP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemes.maj x(φψ)
calemes.min x(ψ → ¬ χ)
Assertion
Ref Expression
calemes x(χ → ¬ φ)

Proof of Theorem calemes
StepHypRef Expression
1 calemes.min . . . . 5 x(ψ → ¬ χ)
21spi 1753 . . . 4 (ψ → ¬ χ)
32con2i 112 . . 3 (χ → ¬ ψ)
4 calemes.maj . . . 4 x(φψ)
54spi 1753 . . 3 (φψ)
63, 5nsyl 113 . 2 (χ → ¬ φ)
76ax-gen 1546 1 x(χ → ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator