NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cnvkeqi GIF version

Theorem cnvkeqi 4217
Description: Equality inference for Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
Hypothesis
Ref Expression
cnvkeqi.1 A = B
Assertion
Ref Expression
cnvkeqi kA = kB

Proof of Theorem cnvkeqi
StepHypRef Expression
1 cnvkeqi.1 . 2 A = B
2 cnvkeq 4216 . 2 (A = BkA = kB)
31, 2ax-mp 5 1 kA = kB
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  kccnvk 4176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-cnvk 4187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator