NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspct GIF version

Theorem rspct 2949
Description: A closed version of rspc 2950. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1 xψ
Assertion
Ref Expression
rspct (x(x = A → (φψ)) → (A B → (x B φψ)))
Distinct variable groups:   x,A   x,B
Allowed substitution hints:   φ(x)   ψ(x)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2620 . . . 4 (x B φx(x Bφ))
2 eleq1 2413 . . . . . . . . . 10 (x = A → (x BA B))
32adantr 451 . . . . . . . . 9 ((x = A (φψ)) → (x BA B))
4 simpr 447 . . . . . . . . 9 ((x = A (φψ)) → (φψ))
53, 4imbi12d 311 . . . . . . . 8 ((x = A (φψ)) → ((x Bφ) ↔ (A Bψ)))
65ex 423 . . . . . . 7 (x = A → ((φψ) → ((x Bφ) ↔ (A Bψ))))
76a2i 12 . . . . . 6 ((x = A → (φψ)) → (x = A → ((x Bφ) ↔ (A Bψ))))
87alimi 1559 . . . . 5 (x(x = A → (φψ)) → x(x = A → ((x Bφ) ↔ (A Bψ))))
9 nfv 1619 . . . . . . 7 x A B
10 rspct.1 . . . . . . 7 xψ
119, 10nfim 1813 . . . . . 6 x(A Bψ)
12 nfcv 2490 . . . . . 6 xA
1311, 12spcgft 2932 . . . . 5 (x(x = A → ((x Bφ) ↔ (A Bψ))) → (A B → (x(x Bφ) → (A Bψ))))
148, 13syl 15 . . . 4 (x(x = A → (φψ)) → (A B → (x(x Bφ) → (A Bψ))))
151, 14syl7bi 221 . . 3 (x(x = A → (φψ)) → (A B → (x B φ → (A Bψ))))
1615com34 77 . 2 (x(x = A → (φψ)) → (A B → (A B → (x B φψ))))
1716pm2.43d 44 1 (x(x = A → (φψ)) → (A B → (x B φψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wnf 1544   = wceq 1642   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator