| Step | Hyp | Ref
| Expression |
| 1 | | df-sfin 4447 |
. . 3
⊢ ( Sfin (M,
N) ↔ (M ∈ Nn ∧ N ∈ Nn ∧ ∃a(℘1a ∈ M ∧ ℘a ∈ N))) |
| 2 | | 3simpa 952 |
. . 3
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ ∃a(℘1a ∈ M ∧ ℘a ∈ N)) →
(M ∈
Nn ∧ N ∈ Nn )) |
| 3 | 1, 2 | sylbi 187 |
. 2
⊢ ( Sfin (M,
N) → (M ∈ Nn ∧ N ∈ Nn )) |
| 4 | | sfintfinlem1 4532 |
. . . 4
⊢ {k ∣ ∀n( Sfin (k,
n) → Sfin ( Tfin k,
Tfin n))} ∈
V |
| 5 | | sfineq1 4527 |
. . . . . 6
⊢ (k = 0c → ( Sfin (k,
n) ↔ Sfin (0c, n))) |
| 6 | | tfineq 4489 |
. . . . . . . 8
⊢ (k = 0c → Tfin k =
Tfin
0c) |
| 7 | | tfin0c 4498 |
. . . . . . . 8
⊢ Tfin 0c =
0c |
| 8 | 6, 7 | syl6eq 2401 |
. . . . . . 7
⊢ (k = 0c → Tfin k =
0c) |
| 9 | | sfineq1 4527 |
. . . . . . 7
⊢ ( Tfin k =
0c → ( Sfin (
Tfin k, Tfin
n) ↔ Sfin (0c, Tfin n))) |
| 10 | 8, 9 | syl 15 |
. . . . . 6
⊢ (k = 0c → ( Sfin ( Tfin k,
Tfin n) ↔ Sfin (0c, Tfin n))) |
| 11 | 5, 10 | imbi12d 311 |
. . . . 5
⊢ (k = 0c → (( Sfin (k,
n) → Sfin ( Tfin k,
Tfin n)) ↔ ( Sfin (0c, n) → Sfin (0c, Tfin n)))) |
| 12 | 11 | albidv 1625 |
. . . 4
⊢ (k = 0c → (∀n( Sfin (k,
n) → Sfin ( Tfin k,
Tfin n)) ↔ ∀n( Sfin (0c, n) → Sfin (0c, Tfin n)))) |
| 13 | | sfineq1 4527 |
. . . . . . 7
⊢ (k = m → (
Sfin (k, n) ↔
Sfin (m, n))) |
| 14 | | tfineq 4489 |
. . . . . . . 8
⊢ (k = m →
Tfin k = Tfin
m) |
| 15 | | sfineq1 4527 |
. . . . . . . 8
⊢ ( Tfin k =
Tfin m → ( Sfin ( Tfin k,
Tfin n) ↔ Sfin ( Tfin m,
Tfin n))) |
| 16 | 14, 15 | syl 15 |
. . . . . . 7
⊢ (k = m → (
Sfin ( Tfin k,
Tfin n) ↔ Sfin ( Tfin m,
Tfin n))) |
| 17 | 13, 16 | imbi12d 311 |
. . . . . 6
⊢ (k = m → ((
Sfin (k, n) →
Sfin ( Tfin k,
Tfin n)) ↔ ( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n)))) |
| 18 | 17 | albidv 1625 |
. . . . 5
⊢ (k = m →
(∀n(
Sfin (k, n) →
Sfin ( Tfin k,
Tfin n)) ↔ ∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n)))) |
| 19 | | sfineq2 4528 |
. . . . . . 7
⊢ (n = p → (
Sfin (m, n) ↔
Sfin (m, p))) |
| 20 | | tfineq 4489 |
. . . . . . . 8
⊢ (n = p →
Tfin n = Tfin
p) |
| 21 | | sfineq2 4528 |
. . . . . . . 8
⊢ ( Tfin n =
Tfin p → ( Sfin ( Tfin m,
Tfin n) ↔ Sfin ( Tfin m,
Tfin p))) |
| 22 | 20, 21 | syl 15 |
. . . . . . 7
⊢ (n = p → (
Sfin ( Tfin m,
Tfin n) ↔ Sfin ( Tfin m,
Tfin p))) |
| 23 | 19, 22 | imbi12d 311 |
. . . . . 6
⊢ (n = p → ((
Sfin (m, n) →
Sfin ( Tfin m,
Tfin n)) ↔ ( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)))) |
| 24 | 23 | cbvalv 2002 |
. . . . 5
⊢ (∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n)) ↔ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p))) |
| 25 | 18, 24 | syl6bb 252 |
. . . 4
⊢ (k = m →
(∀n(
Sfin (k, n) →
Sfin ( Tfin k,
Tfin n)) ↔ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)))) |
| 26 | | sfineq1 4527 |
. . . . . 6
⊢ (k = (m
+c 1c) → ( Sfin (k,
n) ↔ Sfin ((m
+c 1c), n))) |
| 27 | | tfineq 4489 |
. . . . . . 7
⊢ (k = (m
+c 1c) → Tfin k =
Tfin (m +c
1c)) |
| 28 | | sfineq1 4527 |
. . . . . . 7
⊢ ( Tfin k =
Tfin (m +c 1c) →
( Sfin ( Tfin k,
Tfin n) ↔ Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 29 | 27, 28 | syl 15 |
. . . . . 6
⊢ (k = (m
+c 1c) → ( Sfin ( Tfin k,
Tfin n) ↔ Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 30 | 26, 29 | imbi12d 311 |
. . . . 5
⊢ (k = (m
+c 1c) → (( Sfin (k,
n) → Sfin ( Tfin k,
Tfin n)) ↔ ( Sfin ((m
+c 1c), n) → Sfin ( Tfin (m
+c 1c), Tfin n)))) |
| 31 | 30 | albidv 1625 |
. . . 4
⊢ (k = (m
+c 1c) → (∀n( Sfin (k,
n) → Sfin ( Tfin k,
Tfin n)) ↔ ∀n( Sfin ((m
+c 1c), n) → Sfin ( Tfin (m
+c 1c), Tfin n)))) |
| 32 | | sfineq1 4527 |
. . . . . 6
⊢ (k = M → (
Sfin (k, n) ↔
Sfin (M, n))) |
| 33 | | tfineq 4489 |
. . . . . . 7
⊢ (k = M →
Tfin k = Tfin
M) |
| 34 | | sfineq1 4527 |
. . . . . . 7
⊢ ( Tfin k =
Tfin M → ( Sfin ( Tfin k,
Tfin n) ↔ Sfin ( Tfin M,
Tfin n))) |
| 35 | 33, 34 | syl 15 |
. . . . . 6
⊢ (k = M → (
Sfin ( Tfin k,
Tfin n) ↔ Sfin ( Tfin M,
Tfin n))) |
| 36 | 32, 35 | imbi12d 311 |
. . . . 5
⊢ (k = M → ((
Sfin (k, n) →
Sfin ( Tfin k,
Tfin n)) ↔ ( Sfin (M,
n) → Sfin ( Tfin M,
Tfin n)))) |
| 37 | 36 | albidv 1625 |
. . . 4
⊢ (k = M →
(∀n(
Sfin (k, n) →
Sfin ( Tfin k,
Tfin n)) ↔ ∀n( Sfin (M,
n) → Sfin ( Tfin M,
Tfin n)))) |
| 38 | | sfin01 4529 |
. . . . . . 7
⊢ Sfin (0c,
1c) |
| 39 | | sfin112 4530 |
. . . . . . 7
⊢ (( Sfin (0c, n) ∧ Sfin (0c,
1c)) → n =
1c) |
| 40 | 38, 39 | mpan2 652 |
. . . . . 6
⊢ ( Sfin (0c, n) → n =
1c) |
| 41 | | tfineq 4489 |
. . . . . . . . 9
⊢ (n = 1c → Tfin n =
Tfin
1c) |
| 42 | | tfin1c 4500 |
. . . . . . . . 9
⊢ Tfin 1c =
1c |
| 43 | 41, 42 | syl6eq 2401 |
. . . . . . . 8
⊢ (n = 1c → Tfin n =
1c) |
| 44 | | sfineq2 4528 |
. . . . . . . 8
⊢ ( Tfin n =
1c → ( Sfin
(0c, Tfin n) ↔ Sfin (0c,
1c))) |
| 45 | 43, 44 | syl 15 |
. . . . . . 7
⊢ (n = 1c → ( Sfin (0c, Tfin n)
↔ Sfin (0c,
1c))) |
| 46 | 38, 45 | mpbiri 224 |
. . . . . 6
⊢ (n = 1c → Sfin (0c, Tfin n)) |
| 47 | 40, 46 | syl 15 |
. . . . 5
⊢ ( Sfin (0c, n) → Sfin (0c, Tfin n)) |
| 48 | 47 | ax-gen 1546 |
. . . 4
⊢ ∀n( Sfin (0c, n) → Sfin (0c, Tfin n)) |
| 49 | | df-sfin 4447 |
. . . . . . . . . 10
⊢ ( Sfin ((m
+c 1c), n) ↔ ((m
+c 1c) ∈
Nn ∧ n ∈ Nn ∧ ∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ n))) |
| 50 | 49 | simp3bi 972 |
. . . . . . . . 9
⊢ ( Sfin ((m
+c 1c), n) → ∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ n)) |
| 51 | 50 | 3ad2ant3 978 |
. . . . . . . 8
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → ∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ n)) |
| 52 | | sfindbl 4531 |
. . . . . . . . . . . . 13
⊢ ((m ∈ Nn ∧ ℘1a ∈ (m +c 1c)) →
∃q ∈ Nn ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))) |
| 53 | 52 | 3ad2antl1 1117 |
. . . . . . . . . . . 12
⊢ (((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) ∧ ℘1a ∈ (m +c 1c)) →
∃q ∈ Nn ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))) |
| 54 | | sfineq2 4528 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (p = q → (
Sfin (m, p) ↔
Sfin (m, q))) |
| 55 | | tfineq 4489 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (p = q →
Tfin p = Tfin
q) |
| 56 | | sfineq2 4528 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ( Tfin p =
Tfin q → ( Sfin ( Tfin m,
Tfin p) ↔ Sfin ( Tfin m,
Tfin q))) |
| 57 | 55, 56 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (p = q → (
Sfin ( Tfin m,
Tfin p) ↔ Sfin ( Tfin m,
Tfin q))) |
| 58 | 54, 57 | imbi12d 311 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (p = q → ((
Sfin (m, p) →
Sfin ( Tfin m,
Tfin p)) ↔ ( Sfin (m,
q) → Sfin ( Tfin m,
Tfin q)))) |
| 59 | 58 | spv 1998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) → ( Sfin (m,
q) → Sfin ( Tfin m,
Tfin q))) |
| 60 | | simprrl 740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q))))) → Sfin (m,
q)) |
| 61 | 60 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) → Sfin (m,
q)) |
| 62 | | simplrl 736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Sfin ((m
+c 1c), n)) |
| 63 | | simprrr 741 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q))))) → Sfin ((m
+c 1c), (q +c q))) |
| 64 | 63 | ad2antlr 707 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Sfin ((m
+c 1c), (q +c q))) |
| 65 | | sfin112 4530 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Sfin ((m
+c 1c), n) ∧ Sfin ((m
+c 1c), (q +c q))) → n =
(q +c q)) |
| 66 | 62, 64, 65 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → n =
(q +c q)) |
| 67 | | df-sfin 4447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ( Sfin ((m
+c 1c), (q +c q)) ↔ ((m
+c 1c) ∈
Nn ∧ (q +c q) ∈ Nn ∧ ∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)))) |
| 68 | 67 | simp3bi 972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ( Sfin ((m
+c 1c), (q +c q)) → ∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q))) |
| 69 | 64, 68 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → ∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q))) |
| 70 | | simp2 956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
Sfin ( Tfin m,
Tfin q)) |
| 71 | | df-sfin 4447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ( Sfin ( Tfin m,
Tfin q) ↔ ( Tfin m
∈ Nn ∧ Tfin
q ∈ Nn ∧ ∃a(℘1a ∈ Tfin m
∧ ℘a ∈ Tfin
q))) |
| 72 | 71 | simp1bi 970 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ( Sfin ( Tfin m,
Tfin q) → Tfin m
∈ Nn
) |
| 73 | 70, 72 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
Tfin m ∈ Nn ) |
| 74 | | simp1l 979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
m ∈ Nn ) |
| 75 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (m ∈ Nn → (m
+c 1c) ∈
Nn ) |
| 76 | 74, 75 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
(m +c
1c) ∈ Nn ) |
| 77 | | simp3 957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
℘1a ∈ (m +c
1c)) |
| 78 | | tfinpw1 4495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((m +c 1c) ∈ Nn ∧ ℘1a ∈ (m +c 1c)) →
℘1℘1a ∈ Tfin (m
+c 1c)) |
| 79 | 76, 77, 78 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
℘1℘1a ∈ Tfin (m
+c 1c)) |
| 80 | | ne0i 3557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (℘1a ∈ (m +c 1c) →
(m +c
1c) ≠ ∅) |
| 81 | 80 | 3ad2ant3 978 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
(m +c
1c) ≠ ∅) |
| 82 | | tfinsuc 4499 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((m ∈ Nn ∧ (m +c 1c) ≠
∅) → Tfin (m
+c 1c) = ( Tfin m
+c 1c)) |
| 83 | 74, 81, 82 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
Tfin (m +c 1c) = (
Tfin m +c
1c)) |
| 84 | 79, 83 | eleqtrd 2429 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
℘1℘1a ∈ ( Tfin m
+c 1c)) |
| 85 | | sfindbl 4531 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (( Tfin m
∈ Nn ∧ ℘1℘1a ∈ ( Tfin m
+c 1c)) → ∃k ∈ Nn ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) |
| 86 | 73, 84, 85 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
∃k ∈ Nn ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) |
| 87 | | simp2 956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) → Sfin ( Tfin m,
Tfin q)) |
| 88 | | simp3l 983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) → Sfin ( Tfin m,
k)) |
| 89 | | sfin112 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (( Sfin ( Tfin m,
Tfin q) ∧ Sfin ( Tfin m,
k)) → Tfin q =
k) |
| 90 | 87, 88, 89 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) → Tfin q =
k) |
| 91 | | addceq12 4386 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (( Tfin q =
k ∧ Tfin q =
k) → ( Tfin q
+c Tfin q) = (k
+c k)) |
| 92 | 91 | anidms 626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ( Tfin q =
k → ( Tfin q
+c Tfin q) = (k
+c k)) |
| 93 | | sfineq2 4528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (( Tfin q
+c Tfin q) = (k
+c k) → ( Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)) ↔ Sfin (( Tfin m
+c 1c), (k +c k)))) |
| 94 | 92, 93 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ( Tfin q =
k → ( Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)) ↔ Sfin (( Tfin m
+c 1c), (k +c k)))) |
| 95 | 94 | biimprcd 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ( Sfin (( Tfin m
+c 1c), (k +c k)) → ( Tfin q =
k → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 96 | 95 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k))) → ( Tfin q =
k → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 97 | 96 | 3ad2ant3 978 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) → ( Tfin q =
k → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 98 | 90, 97 | mpd 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k)))) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q))) |
| 99 | 98 | 3expia 1153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k))) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 100 | 99 | rexlimdvw 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (∃k ∈ Nn ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k))) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 101 | 100 | 3adant3 975 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
(∃k
∈ Nn ( Sfin ( Tfin m,
k) ∧ Sfin (( Tfin m
+c 1c), (k +c k))) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 102 | 86, 101 | mpd 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q) ∧ ℘1a ∈ (m +c 1c)) →
Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q))) |
| 103 | 102 | 3expia 1153 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (℘1a ∈ (m +c 1c) →
Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 104 | 103 | adantrd 454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → ((℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 105 | 104 | exlimdv 1636 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 106 | 69, 105 | mpd 14 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q))) |
| 107 | | simpll 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → m
∈ Nn
) |
| 108 | 80 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)) → (m
+c 1c) ≠ ∅) |
| 109 | 108 | exlimiv 1634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)) → (m
+c 1c) ≠ ∅) |
| 110 | 64, 68, 109 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (m
+c 1c) ≠ ∅) |
| 111 | 107, 110,
82 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Tfin (m
+c 1c) = ( Tfin m
+c 1c)) |
| 112 | | simprrl 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) → q
∈ Nn
) |
| 113 | 112 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → q
∈ Nn
) |
| 114 | | ne0i 3557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (℘a ∈ (q
+c q) → (q +c q) ≠ ∅) |
| 115 | 114 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)) → (q
+c q) ≠ ∅) |
| 116 | 115 | exlimiv 1634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ (q +c q)) → (q
+c q) ≠ ∅) |
| 117 | 64, 68, 116 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (q
+c q) ≠ ∅) |
| 118 | | tfindi 4497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((q ∈ Nn ∧ q ∈ Nn ∧ (q +c q) ≠ ∅) →
Tfin (q +c q) = ( Tfin
q +c Tfin q)) |
| 119 | 113, 113,
117, 118 | syl3anc 1182 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Tfin (q
+c q) = ( Tfin q
+c Tfin q)) |
| 120 | | sfineq1 4527 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ( Tfin (m
+c 1c) = ( Tfin m
+c 1c) → ( Sfin ( Tfin (m
+c 1c), Tfin (q
+c q)) ↔ Sfin (( Tfin m
+c 1c), Tfin (q
+c q)))) |
| 121 | | sfineq2 4528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ( Tfin (q
+c q) = ( Tfin q
+c Tfin q) → ( Sfin (( Tfin m
+c 1c), Tfin (q
+c q)) ↔ Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 122 | 120, 121 | sylan9bb 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (( Tfin (m
+c 1c) = ( Tfin m
+c 1c) ∧
Tfin (q +c q) = ( Tfin
q +c Tfin q))
→ ( Sfin ( Tfin (m
+c 1c), Tfin (q
+c q)) ↔ Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 123 | 111, 119,
122 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → ( Sfin ( Tfin (m
+c 1c), Tfin (q
+c q)) ↔ Sfin (( Tfin m
+c 1c), ( Tfin q
+c Tfin q)))) |
| 124 | 106, 123 | mpbird 223 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Sfin ( Tfin (m
+c 1c), Tfin (q
+c q))) |
| 125 | | tfineq 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (n = (q
+c q) → Tfin n =
Tfin (q +c q)) |
| 126 | | sfineq2 4528 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( Tfin n =
Tfin (q +c q) → ( Sfin ( Tfin (m
+c 1c), Tfin n)
↔ Sfin ( Tfin (m
+c 1c), Tfin (q
+c q)))) |
| 127 | 125, 126 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (n = (q
+c q) → ( Sfin ( Tfin (m
+c 1c), Tfin n)
↔ Sfin ( Tfin (m
+c 1c), Tfin (q
+c q)))) |
| 128 | 127 | biimprcd 216 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ( Sfin ( Tfin (m
+c 1c), Tfin (q
+c q)) → (n = (q
+c q) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 129 | 124, 128 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → (n =
(q +c q) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 130 | 66, 129 | mpd 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) ∧ Sfin ( Tfin m,
Tfin q)) → Sfin ( Tfin (m
+c 1c), Tfin n)) |
| 131 | 130 | ex 423 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) → ( Sfin ( Tfin m,
Tfin q) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 132 | 61, 131 | embantd 50 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) → (( Sfin (m,
q) → Sfin ( Tfin m,
Tfin q)) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 133 | 59, 132 | syl5 28 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((m ∈ Nn ∧ ( Sfin ((m
+c 1c), n) ∧ (q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))))) → (∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 134 | 133 | exp32 588 |
. . . . . . . . . . . . . . . . . 18
⊢ (m ∈ Nn → ( Sfin
((m +c
1c), n) → ((q ∈ Nn ∧ ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q)))) → (∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) → Sfin ( Tfin (m
+c 1c), Tfin n))))) |
| 135 | 134 | com34 77 |
. . . . . . . . . . . . . . . . 17
⊢ (m ∈ Nn → ( Sfin
((m +c
1c), n) → (∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) → ((q
∈ Nn ∧ ( Sfin
(m, q)
∧ Sfin
((m +c
1c), (q
+c q)))) → Sfin ( Tfin (m
+c 1c), Tfin n))))) |
| 136 | 135 | com23 72 |
. . . . . . . . . . . . . . . 16
⊢ (m ∈ Nn → (∀p( Sfin
(m, p)
→ Sfin ( Tfin m,
Tfin p)) → ( Sfin ((m
+c 1c), n) → ((q
∈ Nn ∧ ( Sfin
(m, q)
∧ Sfin
((m +c
1c), (q
+c q)))) → Sfin ( Tfin (m
+c 1c), Tfin n))))) |
| 137 | 136 | 3imp 1145 |
. . . . . . . . . . . . . . 15
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → ((q
∈ Nn ∧ ( Sfin
(m, q)
∧ Sfin
((m +c
1c), (q
+c q)))) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 138 | 137 | exp3a 425 |
. . . . . . . . . . . . . 14
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → (q
∈ Nn → ((
Sfin (m, q) ∧ Sfin
((m +c
1c), (q
+c q))) → Sfin ( Tfin (m
+c 1c), Tfin n)))) |
| 139 | 138 | rexlimdv 2738 |
. . . . . . . . . . . . 13
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → (∃q ∈ Nn ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q))) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 140 | 139 | adantr 451 |
. . . . . . . . . . . 12
⊢ (((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) ∧ ℘1a ∈ (m +c 1c)) →
(∃q
∈ Nn ( Sfin (m,
q) ∧ Sfin ((m
+c 1c), (q +c q))) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 141 | 53, 140 | mpd 14 |
. . . . . . . . . . 11
⊢ (((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) ∧ ℘1a ∈ (m +c 1c)) →
Sfin ( Tfin (m
+c 1c), Tfin n)) |
| 142 | 141 | ex 423 |
. . . . . . . . . 10
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → (℘1a ∈ (m +c 1c) →
Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 143 | 142 | adantrd 454 |
. . . . . . . . 9
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → ((℘1a ∈ (m +c 1c) ∧ ℘a ∈ n) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 144 | 143 | exlimdv 1636 |
. . . . . . . 8
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → (∃a(℘1a ∈ (m +c 1c) ∧ ℘a ∈ n) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 145 | 51, 144 | mpd 14 |
. . . . . . 7
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p)) ∧ Sfin ((m
+c 1c), n)) → Sfin ( Tfin (m
+c 1c), Tfin n)) |
| 146 | 145 | 3expia 1153 |
. . . . . 6
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p))) → ( Sfin ((m
+c 1c), n) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 147 | 146 | alrimiv 1631 |
. . . . 5
⊢ ((m ∈ Nn ∧ ∀p( Sfin (m,
p) → Sfin ( Tfin m,
Tfin p))) → ∀n( Sfin ((m
+c 1c), n) → Sfin ( Tfin (m
+c 1c), Tfin n))) |
| 148 | 147 | ex 423 |
. . . 4
⊢ (m ∈ Nn → (∀p( Sfin
(m, p)
→ Sfin ( Tfin m,
Tfin p)) → ∀n( Sfin ((m
+c 1c), n) → Sfin ( Tfin (m
+c 1c), Tfin n)))) |
| 149 | 4, 12, 25, 31, 37, 48, 148 | finds 4412 |
. . 3
⊢ (M ∈ Nn → ∀n( Sfin
(M, n)
→ Sfin ( Tfin M,
Tfin n))) |
| 150 | | sfineq2 4528 |
. . . . 5
⊢ (n = N → (
Sfin (M, n) ↔
Sfin (M, N))) |
| 151 | | tfineq 4489 |
. . . . . 6
⊢ (n = N →
Tfin n = Tfin
N) |
| 152 | | sfineq2 4528 |
. . . . . 6
⊢ ( Tfin n =
Tfin N → ( Sfin ( Tfin M,
Tfin n) ↔ Sfin ( Tfin M,
Tfin N))) |
| 153 | 151, 152 | syl 15 |
. . . . 5
⊢ (n = N → (
Sfin ( Tfin M,
Tfin n) ↔ Sfin ( Tfin M,
Tfin N))) |
| 154 | 150, 153 | imbi12d 311 |
. . . 4
⊢ (n = N → ((
Sfin (M, n) →
Sfin ( Tfin M,
Tfin n)) ↔ ( Sfin (M,
N) → Sfin ( Tfin M,
Tfin N)))) |
| 155 | 154 | spcgv 2940 |
. . 3
⊢ (N ∈ Nn → (∀n( Sfin
(M, n)
→ Sfin ( Tfin M,
Tfin n)) → ( Sfin (M,
N) → Sfin ( Tfin M,
Tfin N)))) |
| 156 | 149, 155 | mpan9 455 |
. 2
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → ( Sfin (M,
N) → Sfin ( Tfin M,
Tfin N))) |
| 157 | 3, 156 | mpcom 32 |
1
⊢ ( Sfin (M,
N) → Sfin ( Tfin M,
Tfin N)) |