New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > notbi | GIF version |
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
Ref | Expression |
---|---|
notbi | ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((φ ↔ ψ) → (φ ↔ ψ)) | |
2 | 1 | notbid 285 | . 2 ⊢ ((φ ↔ ψ) → (¬ φ ↔ ¬ ψ)) |
3 | id 19 | . . 3 ⊢ ((¬ φ ↔ ¬ ψ) → (¬ φ ↔ ¬ ψ)) | |
4 | 3 | con4bid 284 | . 2 ⊢ ((¬ φ ↔ ¬ ψ) → (φ ↔ ψ)) |
5 | 2, 4 | impbii 180 | 1 ⊢ ((φ ↔ ψ) ↔ (¬ φ ↔ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: notbii 287 con4bii 288 con2bi 318 nbn2 334 pm5.32 617 cbvexd 2009 rexxpf 4829 |
Copyright terms: Public domain | W3C validator |