NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  notbi GIF version

Theorem notbi 286
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.)
Assertion
Ref Expression
notbi ((φψ) ↔ (¬ φ ↔ ¬ ψ))

Proof of Theorem notbi
StepHypRef Expression
1 id 19 . . 3 ((φψ) → (φψ))
21notbid 285 . 2 ((φψ) → (¬ φ ↔ ¬ ψ))
3 id 19 . . 3 ((¬ φ ↔ ¬ ψ) → (¬ φ ↔ ¬ ψ))
43con4bid 284 . 2 ((¬ φ ↔ ¬ ψ) → (φψ))
52, 4impbii 180 1 ((φψ) ↔ (¬ φ ↔ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  notbii  287  con4bii  288  con2bi  318  nbn2  334  pm5.32  617  cbvexd  2009  rexxpf  4829
  Copyright terms: Public domain W3C validator