New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bibi2i | GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi.a | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((χ ↔ φ) ↔ (χ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((χ ↔ φ) → (χ ↔ φ)) | |
2 | bibi.a | . . 3 ⊢ (φ ↔ ψ) | |
3 | 1, 2 | syl6bb 252 | . 2 ⊢ ((χ ↔ φ) → (χ ↔ ψ)) |
4 | id 19 | . . 3 ⊢ ((χ ↔ ψ) → (χ ↔ ψ)) | |
5 | 4, 2 | syl6bbr 254 | . 2 ⊢ ((χ ↔ ψ) → (χ ↔ φ)) |
6 | 3, 5 | impbii 180 | 1 ⊢ ((χ ↔ φ) ↔ (χ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bibi1i 305 bibi12i 306 bibi2d 309 con2bi 318 pm4.71r 612 xorass 1308 sblbis 2072 sbrbif 2074 abeq2 2459 abid2f 2515 pm13.183 2980 dfss2 3263 necompl 3545 disj3 3596 euabsn2 3792 axprimlem1 4089 axprimlem2 4090 axxpprim 4091 axsiprim 4094 axtyplowerprim 4095 axins2prim 4096 axins3prim 4097 ninexg 4098 1cex 4143 eqpw1 4163 xpkvexg 4286 p6exg 4291 eqop 4612 |
Copyright terms: Public domain | W3C validator |