New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imagekeq | GIF version |
Description: Equality theorem for image operation. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
imagekeq | ⊢ (A = B → ImagekA = ImagekB) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sikeq 4242 | . . . . . . . 8 ⊢ (A = B → SIk A = SIk B) | |
2 | 1 | cnvkeqd 4218 | . . . . . . 7 ⊢ (A = B → ◡k SIk A = ◡k SIk B) |
3 | 2 | cokeq2d 4236 | . . . . . 6 ⊢ (A = B → ( Sk ∘k ◡k SIk A) = ( Sk ∘k ◡k SIk B)) |
4 | 3 | ins3keqd 4224 | . . . . 5 ⊢ (A = B → Ins3k ( Sk ∘k ◡k SIk A) = Ins3k ( Sk ∘k ◡k SIk B)) |
5 | 4 | symdifeq2d 3256 | . . . 4 ⊢ (A = B → ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) = ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk B))) |
6 | 5 | imakeq1d 4229 | . . 3 ⊢ (A = B → (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c) = (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk B)) “k ℘1℘11c)) |
7 | 6 | difeq2d 3386 | . 2 ⊢ (A = B → ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk B)) “k ℘1℘11c))) |
8 | df-imagek 4195 | . 2 ⊢ ImagekA = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk A)) “k ℘1℘11c)) | |
9 | df-imagek 4195 | . 2 ⊢ ImagekB = ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk B)) “k ℘1℘11c)) | |
10 | 7, 8, 9 | 3eqtr4g 2410 | 1 ⊢ (A = B → ImagekA = ImagekB) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 Vcvv 2860 ∖ cdif 3207 ⊕ csymdif 3210 1cc1c 4135 ℘1cpw1 4136 ×k cxpk 4175 ◡kccnvk 4176 Ins2k cins2k 4177 Ins3k cins3k 4178 “k cimak 4180 ∘k ccomk 4181 SIk csik 4182 Imagekcimagek 4183 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-cnvk 4187 df-ins3k 4189 df-imak 4190 df-cok 4191 df-sik 4193 df-imagek 4195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |