NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imagekeq GIF version

Theorem imagekeq 4245
Description: Equality theorem for image operation. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
imagekeq (A = B → ImagekA = ImagekB)

Proof of Theorem imagekeq
StepHypRef Expression
1 sikeq 4242 . . . . . . . 8 (A = BSIk A = SIk B)
21cnvkeqd 4218 . . . . . . 7 (A = Bk SIk A = k SIk B)
32cokeq2d 4236 . . . . . 6 (A = B → ( Sk k k SIk A) = ( Sk k k SIk B))
43ins3keqd 4224 . . . . 5 (A = BIns3k ( Sk k k SIk A) = Ins3k ( Sk k k SIk B))
54symdifeq2d 3256 . . . 4 (A = B → ( Ins2k SkIns3k ( Sk k k SIk A)) = ( Ins2k SkIns3k ( Sk k k SIk B)))
65imakeq1d 4229 . . 3 (A = B → (( Ins2k SkIns3k ( Sk k k SIk A)) “k 111c) = (( Ins2k SkIns3k ( Sk k k SIk B)) “k 111c))
76difeq2d 3386 . 2 (A = B → ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk A)) “k 111c)) = ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk B)) “k 111c)))
8 df-imagek 4195 . 2 ImagekA = ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk A)) “k 111c))
9 df-imagek 4195 . 2 ImagekB = ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk B)) “k 111c))
107, 8, 93eqtr4g 2410 1 (A = B → ImagekA = ImagekB)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  Vcvv 2860   cdif 3207  csymdif 3210  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-cnvk 4187  df-ins3k 4189  df-imak 4190  df-cok 4191  df-sik 4193  df-imagek 4195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator