NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelimagek GIF version

Theorem opkelimagek 4273
Description: Membership in the Kuratowski image functor. (Contributed by SF, 20-Jan-2015.)
Hypotheses
Ref Expression
opkelimagek.1 A V
opkelimagek.2 B V
Assertion
Ref Expression
opkelimagek (⟪A, B ImagekCB = (Ck A))

Proof of Theorem opkelimagek
StepHypRef Expression
1 opkelimagek.1 . 2 A V
2 opkelimagek.2 . 2 B V
3 opkelimagekg 4272 . 2 ((A V B V) → (⟪A, B ImagekCB = (Ck A)))
41, 2, 3mp2an 653 1 (⟪A, B ImagekCB = (Ck A))
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  Vcvv 2860  copk 4058  k cimak 4180  Imagekcimagek 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-sik 4193  df-ssetk 4194  df-imagek 4195
This theorem is referenced by:  preaddccan2lem1  4455  ltfinex  4465  evenodddisjlem1  4516  dfphi2  4570  dfop2lem1  4574  dfop2  4576  dfproj12  4577  phialllem1  4617  setconslem1  4732  setconslem2  4733  dfswap2  4742
  Copyright terms: Public domain W3C validator