NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imagekrelk GIF version

Theorem imagekrelk 4274
Description: The Kuratowski image functor is a relationship. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
imagekrelk ImagekA (V ×k V)

Proof of Theorem imagekrelk
StepHypRef Expression
1 df-imagek 4195 . 2 ImagekA = ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk A)) “k 111c))
2 difss 3394 . 2 ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk A)) “k 111c)) (V ×k V)
31, 2eqsstri 3302 1 ImagekA (V ×k V)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 2860   cdif 3207  csymdif 3210   wss 3258  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-imagek 4195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator