Detailed syntax breakdown of Definition df-phi
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class A |
| 2 | 1 | cphi 4563 |
. 2
class Phi
A |
| 3 | | vy |
. . . . . 6
setvar y |
| 4 | 3 | cv 1641 |
. . . . 5
class y |
| 5 | | vx |
. . . . . . . 8
setvar x |
| 6 | 5 | cv 1641 |
. . . . . . 7
class x |
| 7 | | cnnc 4374 |
. . . . . . 7
class Nn |
| 8 | 6, 7 | wcel 1710 |
. . . . . 6
wff x
∈ Nn |
| 9 | | c1c 4135 |
. . . . . . 7
class 1c |
| 10 | 6, 9 | cplc 4376 |
. . . . . 6
class (x +c
1c) |
| 11 | 8, 10, 6 | cif 3663 |
. . . . 5
class if(x ∈ Nn , (x
+c 1c), x) |
| 12 | 4, 11 | wceq 1642 |
. . . 4
wff y =
if(x ∈
Nn , (x
+c 1c), x) |
| 13 | 12, 5, 1 | wrex 2616 |
. . 3
wff ∃x ∈ A y = if(x ∈ Nn , (x +c 1c),
x) |
| 14 | 13, 3 | cab 2339 |
. 2
class {y ∣ ∃x ∈ A y = if(x ∈ Nn , (x +c 1c),
x)} |
| 15 | 2, 14 | wceq 1642 |
1
wff Phi
A = {y ∣ ∃x ∈ A y = if(x ∈ Nn , (x +c 1c),
x)} |