Step | Hyp | Ref
| Expression |
1 | | eleq1 2413 |
. . . . . . . . . . . . 13
⊢ (z = 0c → (z ∈ A ↔ 0c ∈ A)) |
2 | 1 | biimpcd 215 |
. . . . . . . . . . . 12
⊢ (z ∈ A → (z =
0c → 0c ∈ A)) |
3 | 2 | con3d 125 |
. . . . . . . . . . 11
⊢ (z ∈ A → (¬ 0c ∈ A →
¬ z =
0c)) |
4 | 3 | impcom 419 |
. . . . . . . . . 10
⊢ ((¬
0c ∈ A ∧ z ∈ A) → ¬ z = 0c) |
5 | 4 | adantll 694 |
. . . . . . . . 9
⊢ (((A ⊆ Nn ∧ ¬
0c ∈ A) ∧ z ∈ A) → ¬ z = 0c) |
6 | | ssel2 3269 |
. . . . . . . . . . 11
⊢ ((A ⊆ Nn ∧ z ∈ A) → z
∈ Nn
) |
7 | 6 | adantlr 695 |
. . . . . . . . . 10
⊢ (((A ⊆ Nn ∧ ¬
0c ∈ A) ∧ z ∈ A) → z
∈ Nn
) |
8 | | nnc0suc 4413 |
. . . . . . . . . 10
⊢ (z ∈ Nn ↔ (z =
0c ∨ ∃x ∈ Nn z = (x
+c 1c))) |
9 | 7, 8 | sylib 188 |
. . . . . . . . 9
⊢ (((A ⊆ Nn ∧ ¬
0c ∈ A) ∧ z ∈ A) → (z =
0c ∨ ∃x ∈ Nn z = (x
+c 1c))) |
10 | | orel1 371 |
. . . . . . . . 9
⊢ (¬ z = 0c → ((z = 0c
∨ ∃x ∈ Nn z = (x +c 1c)) →
∃x ∈ Nn z = (x
+c 1c))) |
11 | 5, 9, 10 | sylc 56 |
. . . . . . . 8
⊢ (((A ⊆ Nn ∧ ¬
0c ∈ A) ∧ z ∈ A) → ∃x ∈ Nn z = (x
+c 1c)) |
12 | | anidm 625 |
. . . . . . . . . 10
⊢ ((z = (x
+c 1c) ∧
z = (x
+c 1c)) ↔ z = (x
+c 1c)) |
13 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (z = w →
(z = (x
+c 1c) ↔ w = (x
+c 1c))) |
14 | 13 | anbi2d 684 |
. . . . . . . . . 10
⊢ (z = w →
((z = (x +c 1c) ∧ z = (x +c 1c)) ↔
(z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
15 | 12, 14 | syl5bbr 250 |
. . . . . . . . 9
⊢ (z = w →
(z = (x
+c 1c) ↔ (z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
16 | 15 | rexbidv 2636 |
. . . . . . . 8
⊢ (z = w →
(∃x
∈ Nn z = (x
+c 1c) ↔ ∃x ∈ Nn (z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
17 | 11, 16 | syl5ibcom 211 |
. . . . . . 7
⊢ (((A ⊆ Nn ∧ ¬
0c ∈ A) ∧ z ∈ A) → (z =
w → ∃x ∈ Nn (z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
18 | | eqtr3 2372 |
. . . . . . . 8
⊢ ((z = (x
+c 1c) ∧
w = (x
+c 1c)) → z = w) |
19 | 18 | rexlimivw 2735 |
. . . . . . 7
⊢ (∃x ∈ Nn (z = (x
+c 1c) ∧
w = (x
+c 1c)) → z = w) |
20 | 17, 19 | impbid1 194 |
. . . . . 6
⊢ (((A ⊆ Nn ∧ ¬
0c ∈ A) ∧ z ∈ A) → (z =
w ↔ ∃x ∈ Nn (z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
21 | 20 | rexbidva 2632 |
. . . . 5
⊢ ((A ⊆ Nn ∧ ¬
0c ∈ A) → (∃z ∈ A z = w ↔
∃z ∈ A ∃x ∈ Nn (z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
22 | | risset 2662 |
. . . . 5
⊢ (w ∈ A ↔ ∃z ∈ A z = w) |
23 | | rexcom 2773 |
. . . . 5
⊢ (∃x ∈ Nn ∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c)) ↔ ∃z ∈ A ∃x ∈ Nn (z = (x
+c 1c) ∧
w = (x
+c 1c))) |
24 | 21, 22, 23 | 3bitr4g 279 |
. . . 4
⊢ ((A ⊆ Nn ∧ ¬
0c ∈ A) → (w
∈ A
↔ ∃x ∈ Nn ∃z ∈ A (z = (x +c 1c) ∧ w = (x +c
1c)))) |
25 | 24 | abbi2dv 2469 |
. . 3
⊢ ((A ⊆ Nn ∧ ¬
0c ∈ A) → A =
{w ∣
∃x ∈ Nn ∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c))}) |
26 | | df-phi 4566 |
. . . 4
⊢ Phi {y ∈ Nn ∣ ∃z ∈ A z = (y +c 1c)} =
{w ∣
∃x ∈ {y ∈ Nn ∣ ∃z ∈ A z = (y +c
1c)}w = if(x ∈ Nn , (x
+c 1c), x)} |
27 | | addceq1 4384 |
. . . . . . . . 9
⊢ (y = x →
(y +c
1c) = (x
+c 1c)) |
28 | 27 | eqeq2d 2364 |
. . . . . . . 8
⊢ (y = x →
(z = (y
+c 1c) ↔ z = (x
+c 1c))) |
29 | 28 | rexbidv 2636 |
. . . . . . 7
⊢ (y = x →
(∃z
∈ A
z = (y
+c 1c) ↔ ∃z ∈ A z = (x
+c 1c))) |
30 | 29 | rexrab 3001 |
. . . . . 6
⊢ (∃x ∈ {y ∈ Nn ∣ ∃z ∈ A z = (y +c
1c)}w = if(x ∈ Nn , (x
+c 1c), x) ↔ ∃x ∈ Nn (∃z ∈ A z = (x
+c 1c) ∧
w = if(x ∈ Nn , (x
+c 1c), x))) |
31 | | iftrue 3669 |
. . . . . . . . . 10
⊢ (x ∈ Nn → if(x ∈ Nn , (x +c 1c),
x) = (x
+c 1c)) |
32 | 31 | eqeq2d 2364 |
. . . . . . . . 9
⊢ (x ∈ Nn → (w =
if(x ∈
Nn , (x
+c 1c), x) ↔ w =
(x +c
1c))) |
33 | 32 | anbi2d 684 |
. . . . . . . 8
⊢ (x ∈ Nn → ((∃z ∈ A z = (x +c 1c) ∧ w =
if(x ∈
Nn , (x
+c 1c), x)) ↔ (∃z ∈ A z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
34 | | r19.41v 2765 |
. . . . . . . 8
⊢ (∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c)) ↔ (∃z ∈ A z = (x
+c 1c) ∧
w = (x
+c 1c))) |
35 | 33, 34 | syl6bbr 254 |
. . . . . . 7
⊢ (x ∈ Nn → ((∃z ∈ A z = (x +c 1c) ∧ w =
if(x ∈
Nn , (x
+c 1c), x)) ↔ ∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c)))) |
36 | 35 | rexbiia 2648 |
. . . . . 6
⊢ (∃x ∈ Nn (∃z ∈ A z = (x
+c 1c) ∧
w = if(x ∈ Nn , (x
+c 1c), x)) ↔ ∃x ∈ Nn ∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c))) |
37 | 30, 36 | bitri 240 |
. . . . 5
⊢ (∃x ∈ {y ∈ Nn ∣ ∃z ∈ A z = (y +c
1c)}w = if(x ∈ Nn , (x
+c 1c), x) ↔ ∃x ∈ Nn ∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c))) |
38 | 37 | abbii 2466 |
. . . 4
⊢ {w ∣ ∃x ∈ {y ∈ Nn ∣ ∃z ∈ A z = (y +c
1c)}w = if(x ∈ Nn , (x
+c 1c), x)} = {w ∣ ∃x ∈ Nn ∃z ∈ A (z = (x +c 1c) ∧ w = (x +c
1c))} |
39 | 26, 38 | eqtri 2373 |
. . 3
⊢ Phi {y ∈ Nn ∣ ∃z ∈ A z = (y +c 1c)} =
{w ∣
∃x ∈ Nn ∃z ∈ A (z = (x
+c 1c) ∧
w = (x
+c 1c))} |
40 | 25, 39 | syl6eqr 2403 |
. 2
⊢ ((A ⊆ Nn ∧ ¬
0c ∈ A) → A =
Phi {y ∈ Nn ∣ ∃z ∈ A z = (y +c
1c)}) |
41 | | dfrab2 3531 |
. . . 4
⊢ {y ∈ Nn ∣ ∃z ∈ A z = (y
+c 1c)} = ({y ∣ ∃z ∈ A z = (y
+c 1c)} ∩ Nn ) |
42 | | vex 2863 |
. . . . . . . . 9
⊢ y ∈
V |
43 | 42 | elimak 4260 |
. . . . . . . 8
⊢ (y ∈ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k A) ↔ ∃z ∈ A
⟪z, y⟫ ∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)) |
44 | | vex 2863 |
. . . . . . . . . . 11
⊢ z ∈
V |
45 | 42, 44 | opkelimagek 4273 |
. . . . . . . . . 10
⊢ (⟪y, z⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
z = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k y)) |
46 | 44, 42 | opkelcnvk 4251 |
. . . . . . . . . 10
⊢ (⟪z, y⟫
∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
⟪y, z⟫ ∈
Imagek(( Ins3k
∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)) |
47 | | dfaddc2 4382 |
. . . . . . . . . . 11
⊢ (y +c 1c) = (((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k y) |
48 | 47 | eqeq2i 2363 |
. . . . . . . . . 10
⊢ (z = (y
+c 1c) ↔ z = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k y)) |
49 | 45, 46, 48 | 3bitr4i 268 |
. . . . . . . . 9
⊢ (⟪z, y⟫
∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔ z = (y
+c 1c)) |
50 | 49 | rexbii 2640 |
. . . . . . . 8
⊢ (∃z ∈ A
⟪z, y⟫ ∈ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔ ∃z ∈ A z = (y
+c 1c)) |
51 | 43, 50 | bitri 240 |
. . . . . . 7
⊢ (y ∈ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k A) ↔ ∃z ∈ A z = (y
+c 1c)) |
52 | 51 | abbi2i 2465 |
. . . . . 6
⊢ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k A) = {y ∣ ∃z ∈ A z = (y
+c 1c)} |
53 | | addcexlem 4383 |
. . . . . . . . . 10
⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
54 | | 1cex 4143 |
. . . . . . . . . . . 12
⊢
1c ∈
V |
55 | 54 | pw1ex 4304 |
. . . . . . . . . . 11
⊢ ℘11c ∈ V |
56 | 55 | pw1ex 4304 |
. . . . . . . . . 10
⊢ ℘1℘11c ∈ V |
57 | 53, 56 | imakex 4301 |
. . . . . . . . 9
⊢ (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
58 | 57 | imagekex 4313 |
. . . . . . . 8
⊢
Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
59 | 58 | cnvkex 4288 |
. . . . . . 7
⊢ ◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
60 | | phiall.1 |
. . . . . . 7
⊢ A ∈
V |
61 | 59, 60 | imakex 4301 |
. . . . . 6
⊢ (◡kImagek((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k A) ∈ V |
62 | 52, 61 | eqeltrri 2424 |
. . . . 5
⊢ {y ∣ ∃z ∈ A z = (y
+c 1c)} ∈
V |
63 | | nncex 4397 |
. . . . 5
⊢ Nn ∈
V |
64 | 62, 63 | inex 4106 |
. . . 4
⊢ ({y ∣ ∃z ∈ A z = (y
+c 1c)} ∩ Nn ) ∈
V |
65 | 41, 64 | eqeltri 2423 |
. . 3
⊢ {y ∈ Nn ∣ ∃z ∈ A z = (y
+c 1c)} ∈
V |
66 | | phieq 4571 |
. . . 4
⊢ (x = {y ∈ Nn ∣ ∃z ∈ A z = (y +c 1c)} →
Phi x = Phi {y ∈ Nn ∣ ∃z ∈ A z = (y +c
1c)}) |
67 | 66 | eqeq2d 2364 |
. . 3
⊢ (x = {y ∈ Nn ∣ ∃z ∈ A z = (y +c 1c)} →
(A = Phi
x ↔ A = Phi {y ∈ Nn ∣ ∃z ∈ A z = (y
+c 1c)})) |
68 | 65, 67 | spcev 2947 |
. 2
⊢ (A = Phi {y ∈ Nn ∣ ∃z ∈ A z = (y
+c 1c)} → ∃x A = Phi x) |
69 | 40, 68 | syl 15 |
1
⊢ ((A ⊆ Nn ∧ ¬
0c ∈ A) → ∃x A = Phi x) |