NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  phialllem1 GIF version

Theorem phialllem1 4617
Description: Lemma for phiall 4619. Any set of numbers without zero is the Phi of a set. (Contributed by Scott Fenton, 14-Apr-2021.)
Hypothesis
Ref Expression
phiall.1 A V
Assertion
Ref Expression
phialllem1 ((A Nn ¬ 0c A) → x A = Phi x)
Distinct variable group:   x,A

Proof of Theorem phialllem1
Dummy variables y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2413 . . . . . . . . . . . . 13 (z = 0c → (z A ↔ 0c A))
21biimpcd 215 . . . . . . . . . . . 12 (z A → (z = 0c → 0c A))
32con3d 125 . . . . . . . . . . 11 (z A → (¬ 0c A → ¬ z = 0c))
43impcom 419 . . . . . . . . . 10 ((¬ 0c A z A) → ¬ z = 0c)
54adantll 694 . . . . . . . . 9 (((A Nn ¬ 0c A) z A) → ¬ z = 0c)
6 ssel2 3269 . . . . . . . . . . 11 ((A Nn z A) → z Nn )
76adantlr 695 . . . . . . . . . 10 (((A Nn ¬ 0c A) z A) → z Nn )
8 nnc0suc 4413 . . . . . . . . . 10 (z Nn ↔ (z = 0c x Nn z = (x +c 1c)))
97, 8sylib 188 . . . . . . . . 9 (((A Nn ¬ 0c A) z A) → (z = 0c x Nn z = (x +c 1c)))
10 orel1 371 . . . . . . . . 9 z = 0c → ((z = 0c x Nn z = (x +c 1c)) → x Nn z = (x +c 1c)))
115, 9, 10sylc 56 . . . . . . . 8 (((A Nn ¬ 0c A) z A) → x Nn z = (x +c 1c))
12 anidm 625 . . . . . . . . . 10 ((z = (x +c 1c) z = (x +c 1c)) ↔ z = (x +c 1c))
13 eqeq1 2359 . . . . . . . . . . 11 (z = w → (z = (x +c 1c) ↔ w = (x +c 1c)))
1413anbi2d 684 . . . . . . . . . 10 (z = w → ((z = (x +c 1c) z = (x +c 1c)) ↔ (z = (x +c 1c) w = (x +c 1c))))
1512, 14syl5bbr 250 . . . . . . . . 9 (z = w → (z = (x +c 1c) ↔ (z = (x +c 1c) w = (x +c 1c))))
1615rexbidv 2636 . . . . . . . 8 (z = w → (x Nn z = (x +c 1c) ↔ x Nn (z = (x +c 1c) w = (x +c 1c))))
1711, 16syl5ibcom 211 . . . . . . 7 (((A Nn ¬ 0c A) z A) → (z = wx Nn (z = (x +c 1c) w = (x +c 1c))))
18 eqtr3 2372 . . . . . . . 8 ((z = (x +c 1c) w = (x +c 1c)) → z = w)
1918rexlimivw 2735 . . . . . . 7 (x Nn (z = (x +c 1c) w = (x +c 1c)) → z = w)
2017, 19impbid1 194 . . . . . 6 (((A Nn ¬ 0c A) z A) → (z = wx Nn (z = (x +c 1c) w = (x +c 1c))))
2120rexbidva 2632 . . . . 5 ((A Nn ¬ 0c A) → (z A z = wz A x Nn (z = (x +c 1c) w = (x +c 1c))))
22 risset 2662 . . . . 5 (w Az A z = w)
23 rexcom 2773 . . . . 5 (x Nn z A (z = (x +c 1c) w = (x +c 1c)) ↔ z A x Nn (z = (x +c 1c) w = (x +c 1c)))
2421, 22, 233bitr4g 279 . . . 4 ((A Nn ¬ 0c A) → (w Ax Nn z A (z = (x +c 1c) w = (x +c 1c))))
2524abbi2dv 2469 . . 3 ((A Nn ¬ 0c A) → A = {w x Nn z A (z = (x +c 1c) w = (x +c 1c))})
26 df-phi 4566 . . . 4 Phi {y Nn z A z = (y +c 1c)} = {w x {y Nn z A z = (y +c 1c)}w = if(x Nn , (x +c 1c), x)}
27 addceq1 4384 . . . . . . . . 9 (y = x → (y +c 1c) = (x +c 1c))
2827eqeq2d 2364 . . . . . . . 8 (y = x → (z = (y +c 1c) ↔ z = (x +c 1c)))
2928rexbidv 2636 . . . . . . 7 (y = x → (z A z = (y +c 1c) ↔ z A z = (x +c 1c)))
3029rexrab 3001 . . . . . 6 (x {y Nn z A z = (y +c 1c)}w = if(x Nn , (x +c 1c), x) ↔ x Nn (z A z = (x +c 1c) w = if(x Nn , (x +c 1c), x)))
31 iftrue 3669 . . . . . . . . . 10 (x Nn → if(x Nn , (x +c 1c), x) = (x +c 1c))
3231eqeq2d 2364 . . . . . . . . 9 (x Nn → (w = if(x Nn , (x +c 1c), x) ↔ w = (x +c 1c)))
3332anbi2d 684 . . . . . . . 8 (x Nn → ((z A z = (x +c 1c) w = if(x Nn , (x +c 1c), x)) ↔ (z A z = (x +c 1c) w = (x +c 1c))))
34 r19.41v 2765 . . . . . . . 8 (z A (z = (x +c 1c) w = (x +c 1c)) ↔ (z A z = (x +c 1c) w = (x +c 1c)))
3533, 34syl6bbr 254 . . . . . . 7 (x Nn → ((z A z = (x +c 1c) w = if(x Nn , (x +c 1c), x)) ↔ z A (z = (x +c 1c) w = (x +c 1c))))
3635rexbiia 2648 . . . . . 6 (x Nn (z A z = (x +c 1c) w = if(x Nn , (x +c 1c), x)) ↔ x Nn z A (z = (x +c 1c) w = (x +c 1c)))
3730, 36bitri 240 . . . . 5 (x {y Nn z A z = (y +c 1c)}w = if(x Nn , (x +c 1c), x) ↔ x Nn z A (z = (x +c 1c) w = (x +c 1c)))
3837abbii 2466 . . . 4 {w x {y Nn z A z = (y +c 1c)}w = if(x Nn , (x +c 1c), x)} = {w x Nn z A (z = (x +c 1c) w = (x +c 1c))}
3926, 38eqtri 2373 . . 3 Phi {y Nn z A z = (y +c 1c)} = {w x Nn z A (z = (x +c 1c) w = (x +c 1c))}
4025, 39syl6eqr 2403 . 2 ((A Nn ¬ 0c A) → A = Phi {y Nn z A z = (y +c 1c)})
41 dfrab2 3531 . . . 4 {y Nn z A z = (y +c 1c)} = ({y z A z = (y +c 1c)} ∩ Nn )
42 vex 2863 . . . . . . . . 9 y V
4342elimak 4260 . . . . . . . 8 (y (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k A) ↔ z Az, y kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c))
44 vex 2863 . . . . . . . . . . 11 z V
4542, 44opkelimagek 4273 . . . . . . . . . 10 (⟪y, z Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ↔ z = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k y))
4644, 42opkelcnvk 4251 . . . . . . . . . 10 (⟪z, y kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ↔ ⟪y, z Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c))
47 dfaddc2 4382 . . . . . . . . . . 11 (y +c 1c) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k y)
4847eqeq2i 2363 . . . . . . . . . 10 (z = (y +c 1c) ↔ z = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k y))
4945, 46, 483bitr4i 268 . . . . . . . . 9 (⟪z, y kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ↔ z = (y +c 1c))
5049rexbii 2640 . . . . . . . 8 (z Az, y kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ↔ z A z = (y +c 1c))
5143, 50bitri 240 . . . . . . 7 (y (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k A) ↔ z A z = (y +c 1c))
5251abbi2i 2465 . . . . . 6 (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k A) = {y z A z = (y +c 1c)}
53 addcexlem 4383 . . . . . . . . . 10 ( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) V
54 1cex 4143 . . . . . . . . . . . 12 1c V
5554pw1ex 4304 . . . . . . . . . . 11 11c V
5655pw1ex 4304 . . . . . . . . . 10 111c V
5753, 56imakex 4301 . . . . . . . . 9 (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) V
5857imagekex 4313 . . . . . . . 8 Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) V
5958cnvkex 4288 . . . . . . 7 kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) V
60 phiall.1 . . . . . . 7 A V
6159, 60imakex 4301 . . . . . 6 (kImagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) “k A) V
6252, 61eqeltrri 2424 . . . . 5 {y z A z = (y +c 1c)} V
63 nncex 4397 . . . . 5 Nn V
6462, 63inex 4106 . . . 4 ({y z A z = (y +c 1c)} ∩ Nn ) V
6541, 64eqeltri 2423 . . 3 {y Nn z A z = (y +c 1c)} V
66 phieq 4571 . . . 4 (x = {y Nn z A z = (y +c 1c)} → Phi x = Phi {y Nn z A z = (y +c 1c)})
6766eqeq2d 2364 . . 3 (x = {y Nn z A z = (y +c 1c)} → (A = Phi xA = Phi {y Nn z A z = (y +c 1c)}))
6865, 67spcev 2947 . 2 (A = Phi {y Nn z A z = (y +c 1c)} → x A = Phi x)
6940, 68syl 15 1 ((A Nn ¬ 0c A) → x A = Phi x)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  {crab 2619  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210   wss 3258   ifcif 3663  copk 4058  1cc1c 4135  1cpw1 4136  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   Nn cnnc 4374  0cc0c 4375   +c cplc 4376   Phi cphi 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-0c 4378  df-addc 4379  df-nnc 4380  df-phi 4566
This theorem is referenced by:  phialllem2  4618
  Copyright terms: Public domain W3C validator