Step | Hyp | Ref
| Expression |
1 | | disj 3592 |
. . . . . . . . . 10
⊢ ((A ∩ Nn ) = ∅ ↔ ∀y ∈ A ¬
y ∈ Nn ) |
2 | 1 | biimpi 186 |
. . . . . . . . 9
⊢ ((A ∩ Nn ) = ∅ → ∀y ∈ A ¬
y ∈ Nn ) |
3 | 2 | r19.21bi 2713 |
. . . . . . . 8
⊢ (((A ∩ Nn ) = ∅ ∧ y ∈ A) → ¬ y ∈ Nn ) |
4 | | iffalse 3670 |
. . . . . . . 8
⊢ (¬ y ∈ Nn → if(y ∈ Nn , (y +c 1c),
y) = y) |
5 | 3, 4 | syl 15 |
. . . . . . 7
⊢ (((A ∩ Nn ) = ∅ ∧ y ∈ A) → if(y
∈ Nn , (y +c 1c),
y) = y) |
6 | 5 | eqeq2d 2364 |
. . . . . 6
⊢ (((A ∩ Nn ) = ∅ ∧ y ∈ A) → (x =
if(y ∈
Nn , (y
+c 1c), y) ↔ x =
y)) |
7 | | equcom 1680 |
. . . . . 6
⊢ (y = x ↔
x = y) |
8 | 6, 7 | syl6bbr 254 |
. . . . 5
⊢ (((A ∩ Nn ) = ∅ ∧ y ∈ A) → (x =
if(y ∈
Nn , (y
+c 1c), y) ↔ y =
x)) |
9 | 8 | rexbidva 2632 |
. . . 4
⊢ ((A ∩ Nn ) = ∅ → (∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ↔ ∃y ∈ A y = x)) |
10 | | risset 2662 |
. . . 4
⊢ (x ∈ A ↔ ∃y ∈ A y = x) |
11 | 9, 10 | syl6bbr 254 |
. . 3
⊢ ((A ∩ Nn ) = ∅ → (∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ↔ x ∈ A)) |
12 | 11 | alrimiv 1631 |
. 2
⊢ ((A ∩ Nn ) = ∅ → ∀x(∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ↔ x ∈ A)) |
13 | | df-phi 4566 |
. . . 4
⊢ Phi A = {x ∣ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)} |
14 | 13 | eqeq1i 2360 |
. . 3
⊢ ( Phi A = A ↔ {x
∣ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)} = A) |
15 | | abeq1 2460 |
. . 3
⊢ ({x ∣ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)} = A
↔ ∀x(∃y ∈ A x =
if(y ∈
Nn , (y
+c 1c), y) ↔ x
∈ A)) |
16 | 14, 15 | bitri 240 |
. 2
⊢ ( Phi A = A ↔ ∀x(∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ↔ x ∈ A)) |
17 | 12, 16 | sylibr 203 |
1
⊢ ((A ∩ Nn ) = ∅ → Phi
A = A) |