Step | Hyp | Ref
| Expression |
1 | | rexun 3443 |
. . 3
⊢ (∃y ∈ (A ∪
B)x =
if(y ∈
Nn , (y
+c 1c), y) ↔ (∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ∨ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y))) |
2 | 1 | abbii 2465 |
. 2
⊢ {x ∣ ∃y ∈ (A ∪
B)x =
if(y ∈
Nn , (y
+c 1c), y)} = {x ∣ (∃y ∈ A x =
if(y ∈
Nn , (y
+c 1c), y) ∨ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y))} |
3 | | df-phi 4565 |
. 2
⊢ Phi (A ∪
B) = {x
∣ ∃y ∈ (A ∪
B)x =
if(y ∈
Nn , (y
+c 1c), y)} |
4 | | df-phi 4565 |
. . . 4
⊢ Phi A = {x ∣ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)} |
5 | | df-phi 4565 |
. . . 4
⊢ Phi B = {x ∣ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y)} |
6 | 4, 5 | uneq12i 3416 |
. . 3
⊢ ( Phi A ∪ Phi B) = ({x ∣ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)} ∪ {x ∣ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y)}) |
7 | | unab 3521 |
. . 3
⊢ ({x ∣ ∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y)} ∪ {x ∣ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y)}) = {x ∣ (∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ∨ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y))} |
8 | 6, 7 | eqtri 2373 |
. 2
⊢ ( Phi A ∪ Phi B) = {x ∣ (∃y ∈ A x = if(y ∈ Nn , (y +c 1c),
y) ∨ ∃y ∈ B x = if(y ∈ Nn , (y +c 1c),
y))} |
9 | 2, 3, 8 | 3eqtr4i 2383 |
1
⊢ Phi (A ∪
B) = ( Phi
A ∪ Phi
B) |