New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqneltrd | GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eqneltrd.1 | ⊢ (φ → A = B) |
eqneltrd.2 | ⊢ (φ → ¬ B ∈ C) |
Ref | Expression |
---|---|
eqneltrd | ⊢ (φ → ¬ A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.2 | . 2 ⊢ (φ → ¬ B ∈ C) | |
2 | eqneltrd.1 | . . 3 ⊢ (φ → A = B) | |
3 | 2 | eleq1d 2419 | . 2 ⊢ (φ → (A ∈ C ↔ B ∈ C)) |
4 | 1, 3 | mtbird 292 | 1 ⊢ (φ → ¬ A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |