New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equsexh | GIF version |
Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equsexh.1 | ⊢ (ψ → ∀xψ) |
equsexh.2 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
equsexh | ⊢ (∃x(x = y ∧ φ) ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsexh.1 | . . 3 ⊢ (ψ → ∀xψ) | |
2 | 1 | nfi 1551 | . 2 ⊢ Ⅎxψ |
3 | equsexh.2 | . 2 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 2, 3 | equsex 1962 | 1 ⊢ (∃x(x = y ∧ φ) ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cleljust 2014 |
Copyright terms: Public domain | W3C validator |