New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equsex | GIF version |
Description: A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
equsex.1 | ⊢ Ⅎxψ |
equsex.2 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
equsex | ⊢ (∃x(x = y ∧ φ) ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1574 | . 2 ⊢ (∃x ¬ (x = y → ¬ φ) ↔ ¬ ∀x(x = y → ¬ φ)) | |
2 | df-an 360 | . . 3 ⊢ ((x = y ∧ φ) ↔ ¬ (x = y → ¬ φ)) | |
3 | 2 | exbii 1582 | . 2 ⊢ (∃x(x = y ∧ φ) ↔ ∃x ¬ (x = y → ¬ φ)) |
4 | equsex.1 | . . . . 5 ⊢ Ⅎxψ | |
5 | 4 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ ψ |
6 | equsex.2 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
7 | 6 | notbid 285 | . . . 4 ⊢ (x = y → (¬ φ ↔ ¬ ψ)) |
8 | 5, 7 | equsal 1960 | . . 3 ⊢ (∀x(x = y → ¬ φ) ↔ ¬ ψ) |
9 | 8 | con2bii 322 | . 2 ⊢ (ψ ↔ ¬ ∀x(x = y → ¬ φ)) |
10 | 1, 3, 9 | 3bitr4i 268 | 1 ⊢ (∃x(x = y ∧ φ) ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: equsexh 1963 cleljustALT 2015 sb56 2098 sb10f 2122 |
Copyright terms: Public domain | W3C validator |