NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dvelimh GIF version

Theorem dvelimh 1964
Description: Version of dvelim 2016 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
Hypotheses
Ref Expression
dvelimh.1 (φxφ)
dvelimh.2 (ψzψ)
dvelimh.3 (z = y → (φψ))
Assertion
Ref Expression
dvelimh x x = y → (ψxψ))

Proof of Theorem dvelimh
StepHypRef Expression
1 hba1 1786 . . . . 5 (z(z = yφ) → zz(z = yφ))
2 ax10o 1952 . . . . . 6 (z z = x → (zz(z = yφ) → xz(z = yφ)))
32aecoms 1947 . . . . 5 (x x = z → (zz(z = yφ) → xz(z = yφ)))
41, 3syl5 28 . . . 4 (x x = z → (z(z = yφ) → xz(z = yφ)))
54a1d 22 . . 3 (x x = z → (¬ x x = y → (z(z = yφ) → xz(z = yφ))))
6 hbnae 1955 . . . . . 6 x x = zz ¬ x x = z)
7 hbnae 1955 . . . . . 6 x x = yz ¬ x x = y)
86, 7hban 1828 . . . . 5 ((¬ x x = z ¬ x x = y) → zx x = z ¬ x x = y))
9 hbnae 1955 . . . . . . 7 x x = zx ¬ x x = z)
10 hbnae 1955 . . . . . . 7 x x = yx ¬ x x = y)
119, 10hban 1828 . . . . . 6 ((¬ x x = z ¬ x x = y) → xx x = z ¬ x x = y))
12 ax12o 1934 . . . . . . 7 x x = z → (¬ x x = y → (z = yx z = y)))
1312imp 418 . . . . . 6 ((¬ x x = z ¬ x x = y) → (z = yx z = y))
14 dvelimh.1 . . . . . . 7 (φxφ)
1514a1i 10 . . . . . 6 ((¬ x x = z ¬ x x = y) → (φxφ))
1611, 13, 15hbimd 1815 . . . . 5 ((¬ x x = z ¬ x x = y) → ((z = yφ) → x(z = yφ)))
178, 16hbald 1740 . . . 4 ((¬ x x = z ¬ x x = y) → (z(z = yφ) → xz(z = yφ)))
1817ex 423 . . 3 x x = z → (¬ x x = y → (z(z = yφ) → xz(z = yφ))))
195, 18pm2.61i 156 . 2 x x = y → (z(z = yφ) → xz(z = yφ)))
20 dvelimh.2 . . 3 (ψzψ)
21 dvelimh.3 . . 3 (z = y → (φψ))
2220, 21equsalh 1961 . 2 (z(z = yφ) ↔ ψ)
2322albii 1566 . 2 (xz(z = yφ) ↔ xψ)
2419, 22, 233imtr3g 260 1 x x = y → (ψxψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  dvelim  2016  dveeq1-o16  2188  dveel2ALT  2191
  Copyright terms: Public domain W3C validator