| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exbi | GIF version | ||
| Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| exbi | ⊢ (∀x(φ ↔ ψ) → (∃xφ ↔ ∃xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi1 178 | . . . 4 ⊢ ((φ ↔ ψ) → (φ → ψ)) | |
| 2 | 1 | alimi 1559 | . . 3 ⊢ (∀x(φ ↔ ψ) → ∀x(φ → ψ)) |
| 3 | exim 1575 | . . 3 ⊢ (∀x(φ → ψ) → (∃xφ → ∃xψ)) | |
| 4 | 2, 3 | syl 15 | . 2 ⊢ (∀x(φ ↔ ψ) → (∃xφ → ∃xψ)) |
| 5 | bi2 189 | . . . 4 ⊢ ((φ ↔ ψ) → (ψ → φ)) | |
| 6 | 5 | alimi 1559 | . . 3 ⊢ (∀x(φ ↔ ψ) → ∀x(ψ → φ)) |
| 7 | exim 1575 | . . 3 ⊢ (∀x(ψ → φ) → (∃xψ → ∃xφ)) | |
| 8 | 6, 7 | syl 15 | . 2 ⊢ (∀x(φ ↔ ψ) → (∃xψ → ∃xφ)) |
| 9 | 4, 8 | impbid 183 | 1 ⊢ (∀x(φ ↔ ψ) → (∃xφ ↔ ∃xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: exbii 1582 exbidh 1591 exintrbi 1613 19.19 1862 |
| Copyright terms: Public domain | W3C validator |