New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exim | GIF version |
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
exim | ⊢ (∀x(φ → ψ) → (∃xφ → ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 126 | . . . 4 ⊢ ((φ → ψ) → (¬ ψ → ¬ φ)) | |
2 | 1 | al2imi 1561 | . . 3 ⊢ (∀x(φ → ψ) → (∀x ¬ ψ → ∀x ¬ φ)) |
3 | alnex 1543 | . . 3 ⊢ (∀x ¬ ψ ↔ ¬ ∃xψ) | |
4 | alnex 1543 | . . 3 ⊢ (∀x ¬ φ ↔ ¬ ∃xφ) | |
5 | 2, 3, 4 | 3imtr3g 260 | . 2 ⊢ (∀x(φ → ψ) → (¬ ∃xψ → ¬ ∃xφ)) |
6 | 5 | con4d 97 | 1 ⊢ (∀x(φ → ψ) → (∃xφ → ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: eximi 1576 exbi 1581 eximdh 1588 19.29 1596 19.25 1603 19.30 1604 19.23t 1800 19.23tOLD 1819 19.23hOLD 1820 2mo 2282 elex22 2871 elex2 2872 vtoclegft 2927 spcimgft 2931 |
Copyright terms: Public domain | W3C validator |