New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exintrbi | GIF version |
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.) |
Ref | Expression |
---|---|
exintrbi | ⊢ (∀x(φ → ψ) → (∃xφ ↔ ∃x(φ ∧ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 611 | . . 3 ⊢ ((φ → ψ) ↔ (φ ↔ (φ ∧ ψ))) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x(φ → ψ) ↔ ∀x(φ ↔ (φ ∧ ψ))) |
3 | exbi 1581 | . 2 ⊢ (∀x(φ ↔ (φ ∧ ψ)) → (∃xφ ↔ ∃x(φ ∧ ψ))) | |
4 | 2, 3 | sylbi 187 | 1 ⊢ (∀x(φ → ψ) → (∃xφ ↔ ∃x(φ ∧ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: exintr 1614 |
Copyright terms: Public domain | W3C validator |