NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exintrbi GIF version

Theorem exintrbi 1613
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
Assertion
Ref Expression
exintrbi (x(φψ) → (xφx(φ ψ)))

Proof of Theorem exintrbi
StepHypRef Expression
1 pm4.71 611 . . 3 ((φψ) ↔ (φ ↔ (φ ψ)))
21albii 1566 . 2 (x(φψ) ↔ x(φ ↔ (φ ψ)))
3 exbi 1581 . 2 (x(φ ↔ (φ ψ)) → (xφx(φ ψ)))
42, 3sylbi 187 1 (x(φψ) → (xφx(φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  exintr  1614
  Copyright terms: Public domain W3C validator