New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xor2 | GIF version |
Description: Two ways to express "exclusive or." (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
xor2 | ⊢ ((φ ⊻ ψ) ↔ ((φ ∨ ψ) ∧ ¬ (φ ∧ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xor 1305 | . 2 ⊢ ((φ ⊻ ψ) ↔ ¬ (φ ↔ ψ)) | |
2 | nbi2 862 | . 2 ⊢ (¬ (φ ↔ ψ) ↔ ((φ ∨ ψ) ∧ ¬ (φ ∧ ψ))) | |
3 | 1, 2 | bitri 240 | 1 ⊢ ((φ ⊻ ψ) ↔ ((φ ∨ ψ) ∧ ¬ (φ ∧ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 ⊻ wxo 1304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-xor 1305 |
This theorem is referenced by: cador 1391 cad1 1398 |
Copyright terms: Public domain | W3C validator |