| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > exlimdd | GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| exlimdd.1 | ⊢ Ⅎxφ |
| exlimdd.2 | ⊢ Ⅎxχ |
| exlimdd.3 | ⊢ (φ → ∃xψ) |
| exlimdd.4 | ⊢ ((φ ∧ ψ) → χ) |
| Ref | Expression |
|---|---|
| exlimdd | ⊢ (φ → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdd.3 | . 2 ⊢ (φ → ∃xψ) | |
| 2 | exlimdd.1 | . . 3 ⊢ Ⅎxφ | |
| 3 | exlimdd.2 | . . 3 ⊢ Ⅎxχ | |
| 4 | exlimdd.4 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
| 5 | 4 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
| 6 | 2, 3, 5 | exlimd 1806 | . 2 ⊢ (φ → (∃xψ → χ)) |
| 7 | 1, 6 | mpd 14 | 1 ⊢ (φ → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |