New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equs5e | GIF version |
Description: A property related to substitution that unlike equs5 1996 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
equs5e | ⊢ (∃x(x = y ∧ φ) → ∀x(x = y → ∃yφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1732 | . 2 ⊢ Ⅎx∃x(x = y ∧ φ) | |
2 | equs3 1644 | . . 3 ⊢ (∃x(x = y ∧ φ) ↔ ¬ ∀x(x = y → ¬ φ)) | |
3 | ax-11 1746 | . . . . 5 ⊢ (x = y → (∀y ¬ φ → ∀x(x = y → ¬ φ))) | |
4 | 3 | con3rr3 128 | . . . 4 ⊢ (¬ ∀x(x = y → ¬ φ) → (x = y → ¬ ∀y ¬ φ)) |
5 | df-ex 1542 | . . . 4 ⊢ (∃yφ ↔ ¬ ∀y ¬ φ) | |
6 | 4, 5 | syl6ibr 218 | . . 3 ⊢ (¬ ∀x(x = y → ¬ φ) → (x = y → ∃yφ)) |
7 | 2, 6 | sylbi 187 | . 2 ⊢ (∃x(x = y ∧ φ) → (x = y → ∃yφ)) |
8 | 1, 7 | alrimi 1765 | 1 ⊢ (∃x(x = y ∧ φ) → ∀x(x = y → ∃yφ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: sb4e 1924 |
Copyright terms: Public domain | W3C validator |