New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > expr | GIF version |
Description: Export a wff from a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
expr.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
expr | ⊢ ((φ ∧ ψ) → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expr.1 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
2 | 1 | exp32 588 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ ψ) → (χ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: rexlimdvaa 2740 ncfinraise 4482 ncfinlower 4484 tfin11 4494 tfinpw1 4495 tfinltfinlem1 4501 tfinltfin 4502 evenodddisj 4517 nnpweq 4524 sfin112 4530 sfindbl 4531 tfinnn 4535 vfinspss 4552 funiunfv 5468 erth 5969 enprmaplem3 6079 peano4nc 6151 ncssfin 6152 nntccl 6171 leltctr 6213 tlecg 6231 nchoicelem6 6295 nchoicelem8 6297 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |