New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exp4a | GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4a.1 | ⊢ (φ → (ψ → ((χ ∧ θ) → τ))) |
Ref | Expression |
---|---|
exp4a | ⊢ (φ → (ψ → (χ → (θ → τ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4a.1 | . 2 ⊢ (φ → (ψ → ((χ ∧ θ) → τ))) | |
2 | impexp 433 | . 2 ⊢ (((χ ∧ θ) → τ) ↔ (χ → (θ → τ))) | |
3 | 1, 2 | syl6ib 217 | 1 ⊢ (φ → (ψ → (χ → (θ → τ)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: exp4b 590 exp4d 592 exp45 597 exp5c 599 spfininduct 4541 fununiq 5518 fntxp 5805 |
Copyright terms: Public domain | W3C validator |