New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.21i | GIF version |
Description: A contradiction implies anything. Inference from pm2.21 100. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
pm2.21i.1 | ⊢ ¬ φ |
Ref | Expression |
---|---|
pm2.21i | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21i.1 | . . 3 ⊢ ¬ φ | |
2 | 1 | a1i 10 | . 2 ⊢ (¬ ψ → ¬ φ) |
3 | 2 | con4i 122 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.24ii 124 pm3.2ni 827 falim 1328 nfnth 1556 ax4sp1 2174 rex0 3564 0ss 3580 abf 3585 r19.2zb 3641 ral0 3655 snsssn 3874 int0 3941 clos10 5888 po0 5940 connex0 5941 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |