NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funforn GIF version

Theorem funforn 5277
Description: A function maps its domain onto its range. (Contributed by set.mm contributors, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun AA:dom Aonto→ran A)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 5137 . 2 (Fun AA Fn dom A)
2 dffn4 5276 . 2 (A Fn dom AA:dom Aonto→ran A)
31, 2bitri 240 1 (Fun AA:dom Aonto→ran A)
Colors of variables: wff setvar class
Syntax hints:  wb 176  dom cdm 4773  ran crn 4774  Fun wfun 4776   Fn wfn 4777  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-cleq 2346  df-fn 4791  df-fo 4794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator