New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-fo | GIF version |
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). For alternate definitions, see dffo2 5274, dffo3 5423, dffo4 5424, and dffo5 5425. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-fo | ⊢ (F:A–onto→B ↔ (F Fn A ∧ ran F = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | cF | . . 3 class F | |
4 | 1, 2, 3 | wfo 4780 | . 2 wff F:A–onto→B |
5 | 3, 1 | wfn 4777 | . . 3 wff F Fn A |
6 | 3 | crn 4774 | . . . 4 class ran F |
7 | 6, 2 | wceq 1642 | . . 3 wff ran F = B |
8 | 5, 7 | wa 358 | . 2 wff (F Fn A ∧ ran F = B) |
9 | 4, 8 | wb 176 | 1 wff (F:A–onto→B ↔ (F Fn A ∧ ran F = B)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 5266 foeq2 5267 foeq3 5268 nffo 5269 fof 5270 forn 5273 dffo2 5274 dffn4 5276 fores 5279 dff1o2 5292 dff1o3 5293 foimacnv 5304 f1o0 5320 fconst5 5456 fconstfv 5457 dff1o6 5476 1stfo 5506 2ndfo 5507 |
Copyright terms: Public domain | W3C validator |