New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-fn | GIF version |
Description: Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 5225, dffn3 5230, dffn4 5276, and dffn5 5364. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-fn | ⊢ (A Fn B ↔ (Fun A ∧ dom A = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | wfn 4777 | . 2 wff A Fn B |
4 | 1 | wfun 4776 | . . 3 wff Fun A |
5 | 1 | cdm 4773 | . . . 4 class dom A |
6 | 5, 2 | wceq 1642 | . . 3 wff dom A = B |
7 | 4, 6 | wa 358 | . 2 wff (Fun A ∧ dom A = B) |
8 | 3, 7 | wb 176 | 1 wff (A Fn B ↔ (Fun A ∧ dom A = B)) |
Colors of variables: wff setvar class |
This definition is referenced by: funfn 5137 fnsn 5153 fnprg 5154 fncnv 5159 fneq1 5174 fneq2 5175 nffn 5181 fnfun 5182 fndm 5183 fnun 5190 fnco 5192 fnssresb 5196 fnres 5200 fnresi 5201 fn0 5203 fnopabg 5206 f0 5249 f00 5250 fores 5279 dff1o4 5295 foimacnv 5304 fun11iun 5306 f1o0 5320 f1ovi 5322 funfv 5376 respreima 5411 dff3 5421 fpr 5438 fvi 5443 1stfo 5506 2ndfo 5507 swapf1o 5512 fnoprabg 5586 fntxp 5805 fnsex 5833 fnpprod 5844 mapexi 6004 fndmeng 6047 enpw1 6063 enmap2 6069 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |