NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xorbi12d GIF version

Theorem xorbi12d 1315
Description: Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Hypotheses
Ref Expression
xor12d.1 (φ → (ψχ))
xor12d.2 (φ → (θτ))
Assertion
Ref Expression
xorbi12d (φ → ((ψθ) ↔ (χτ)))

Proof of Theorem xorbi12d
StepHypRef Expression
1 xor12d.1 . . . 4 (φ → (ψχ))
2 xor12d.2 . . . 4 (φ → (θτ))
31, 2bibi12d 312 . . 3 (φ → ((ψθ) ↔ (χτ)))
43notbid 285 . 2 (φ → (¬ (ψθ) ↔ ¬ (χτ)))
5 df-xor 1305 . 2 ((ψθ) ↔ ¬ (ψθ))
6 df-xor 1305 . 2 ((χτ) ↔ ¬ (χτ))
74, 5, 63bitr4g 279 1 (φ → ((ψθ) ↔ (χτ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176  wxo 1304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-xor 1305
This theorem is referenced by:  hadbi123d  1382  cadbi123d  1383
  Copyright terms: Public domain W3C validator