| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > xorbi12d | GIF version | ||
| Description: Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| xor12d.1 | ⊢ (φ → (ψ ↔ χ)) |
| xor12d.2 | ⊢ (φ → (θ ↔ τ)) |
| Ref | Expression |
|---|---|
| xorbi12d | ⊢ (φ → ((ψ ⊻ θ) ↔ (χ ⊻ τ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor12d.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | xor12d.2 | . . . 4 ⊢ (φ → (θ ↔ τ)) | |
| 3 | 1, 2 | bibi12d 312 | . . 3 ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ τ))) |
| 4 | 3 | notbid 285 | . 2 ⊢ (φ → (¬ (ψ ↔ θ) ↔ ¬ (χ ↔ τ))) |
| 5 | df-xor 1305 | . 2 ⊢ ((ψ ⊻ θ) ↔ ¬ (ψ ↔ θ)) | |
| 6 | df-xor 1305 | . 2 ⊢ ((χ ⊻ τ) ↔ ¬ (χ ↔ τ)) | |
| 7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (φ → ((ψ ⊻ θ) ↔ (χ ⊻ τ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ⊻ wxo 1304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-xor 1305 |
| This theorem is referenced by: hadbi123d 1382 cadbi123d 1383 |
| Copyright terms: Public domain | W3C validator |