New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbanOLD | GIF version |
Description: Obsolete proof of hban 1828 as of 2-Jan-2018. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hb.1 | ⊢ (φ → ∀xφ) |
hb.2 | ⊢ (ψ → ∀xψ) |
Ref | Expression |
---|---|
hbanOLD | ⊢ ((φ ∧ ψ) → ∀x(φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 360 | . 2 ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | |
2 | hb.1 | . . . 4 ⊢ (φ → ∀xφ) | |
3 | hb.2 | . . . . 5 ⊢ (ψ → ∀xψ) | |
4 | 3 | hbn 1776 | . . . 4 ⊢ (¬ ψ → ∀x ¬ ψ) |
5 | 2, 4 | hbim 1817 | . . 3 ⊢ ((φ → ¬ ψ) → ∀x(φ → ¬ ψ)) |
6 | 5 | hbn 1776 | . 2 ⊢ (¬ (φ → ¬ ψ) → ∀x ¬ (φ → ¬ ψ)) |
7 | 1, 6 | hbxfrbi 1568 | 1 ⊢ ((φ ∧ ψ) → ∀x(φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |