New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbxfrbi | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2457 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
hbxfrbi.1 | ⊢ (φ ↔ ψ) |
hbxfrbi.2 | ⊢ (ψ → ∀xψ) |
Ref | Expression |
---|---|
hbxfrbi | ⊢ (φ → ∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfrbi.2 | . 2 ⊢ (ψ → ∀xψ) | |
2 | hbxfrbi.1 | . 2 ⊢ (φ ↔ ψ) | |
3 | 2 | albii 1566 | . 2 ⊢ (∀xφ ↔ ∀xψ) |
4 | 1, 2, 3 | 3imtr4i 257 | 1 ⊢ (φ → ∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: hbe1w 1708 hbe1 1731 hbanOLD 1829 hb3anOLD 1831 hbex 1841 hbab1 2342 hbab 2344 cleqh 2450 hbxfreq 2457 hbral 2663 hbra1 2664 |
Copyright terms: Public domain | W3C validator |