NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbxfrbi GIF version

Theorem hbxfrbi 1568
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2457 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (φψ)
hbxfrbi.2 (ψxψ)
Assertion
Ref Expression
hbxfrbi (φxφ)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (ψxψ)
2 hbxfrbi.1 . 2 (φψ)
32albii 1566 . 2 (xφxψ)
41, 2, 33imtr4i 257 1 (φxφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  hbe1w  1708  hbe1  1731  hbanOLD  1829  hb3anOLD  1831  hbex  1841  hbab1  2342  hbab  2344  cleqh  2450  hbxfreq  2457  hbral  2663  hbra1  2664
  Copyright terms: Public domain W3C validator