NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hb3an GIF version

Theorem hb3an 1830
Description: If x is not free in φ, ψ, and χ, it is not free in (φ ψ χ). (Contributed by NM, 14-Sep-2003.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
hb.1 (φxφ)
hb.2 (ψxψ)
hb.3 (χxχ)
Assertion
Ref Expression
hb3an ((φ ψ χ) → x(φ ψ χ))

Proof of Theorem hb3an
StepHypRef Expression
1 hb.1 . . . 4 (φxφ)
21nfi 1551 . . 3 xφ
3 hb.2 . . . 4 (ψxψ)
43nfi 1551 . . 3 xψ
5 hb.3 . . . 4 (χxχ)
65nfi 1551 . . 3 xχ
72, 4, 6nf3an 1827 . 2 x(φ ψ χ)
87nfri 1762 1 ((φ ψ χ) → x(φ ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator