New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifcl | GIF version |
Description: Membership (closure) of a conditional operator. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
ifcl | ⊢ ((A ∈ C ∧ B ∈ C) → if(φ, A, B) ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . 2 ⊢ (A = if(φ, A, B) → (A ∈ C ↔ if(φ, A, B) ∈ C)) | |
2 | eleq1 2413 | . 2 ⊢ (B = if(φ, A, B) → (B ∈ C ↔ if(φ, A, B) ∈ C)) | |
3 | 1, 2 | ifboth 3694 | 1 ⊢ ((A ∈ C ∧ B ∈ C) → if(φ, A, B) ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: ifpr 3775 |
Copyright terms: Public domain | W3C validator |