New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq1 | GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1 | ⊢ (A = B → (A ∈ C ↔ B ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2362 | . . . 4 ⊢ (A = B → (x = A ↔ x = B)) | |
2 | 1 | anbi1d 685 | . . 3 ⊢ (A = B → ((x = A ∧ x ∈ C) ↔ (x = B ∧ x ∈ C))) |
3 | 2 | exbidv 1626 | . 2 ⊢ (A = B → (∃x(x = A ∧ x ∈ C) ↔ ∃x(x = B ∧ x ∈ C))) |
4 | df-clel 2349 | . 2 ⊢ (A ∈ C ↔ ∃x(x = A ∧ x ∈ C)) | |
5 | df-clel 2349 | . 2 ⊢ (B ∈ C ↔ ∃x(x = B ∧ x ∈ C)) | |
6 | 3, 4, 5 | 3bitr4g 279 | 1 ⊢ (A = B → (A ∈ C ↔ B ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12 2415 eleq1i 2416 eleq1d 2419 eleq1a 2422 cleqh 2450 nelneq 2451 clelsb1 2455 nfcjust 2478 cleqf 2514 nelne2 2607 neleq1 2608 rgen2a 2681 ralcom2 2776 nfrab 2793 cbvralf 2830 cbvreu 2834 cbvrab 2858 ceqsralt 2883 vtoclgaf 2920 vtocl2gaf 2922 vtocl3gaf 2924 rspct 2949 rspc 2950 rspce 2951 ceqsrexv 2973 ceqsrexbv 2974 clel2 2976 elabgt 2983 elabgf 2984 elrabf 2994 ralab2 3002 rexab2 3004 moeq3 3014 mo2icl 3016 morex 3021 reu2 3025 reu6 3026 rmo4 3030 reu8 3033 reuind 3040 2reu5 3045 ru 3046 dfsbcq 3049 dfsbcq2 3050 sbc8g 3054 sbc2or 3055 sbcel1gv 3106 rmob 3135 ninjust 3211 elning 3218 dfss2f 3265 uniiunlem 3354 disjne 3597 ifel 3698 ifcl 3699 elimel 3715 keepel 3720 elpwg 3730 elpr2 3753 elsnc2g 3762 rabsn 3791 tpid3g 3832 snssg 3845 difsn 3846 sssn 3865 eluni 3895 elunii 3897 eluniab 3904 elint 3933 elintg 3935 elintab 3938 elintrabg 3940 intss1 3942 uniintsn 3964 eliun 3974 eliin 3975 pwadjoin 4120 el1c 4140 elpw1 4145 pw10 4162 eqpw1 4163 pw1in 4165 pw1disj 4168 pw111 4171 eluni1g 4173 elxpk 4197 opkabssvvk 4209 ssrelk 4212 eqrelk 4213 opkelxpkg 4248 cokrelk 4285 sikexlem 4296 dfpw12 4302 insklem 4305 abexv 4325 eqpw1uni 4331 reiota2 4369 nnc0suc 4413 nnsucelrlem2 4426 nnsucelr 4429 nndisjeq 4430 snfi 4432 ltfinex 4465 lenltfin 4470 ssfin 4471 ncfineq 4474 ncfinlower 4484 tfinltfinlem1 4501 evenoddnnnul 4515 nnadjoinpw 4522 sfineq1 4527 sfineq2 4528 sfindbl 4531 sfinltfin 4536 spfinsfincl 4540 vfinspsslem1 4551 vfinspss 4552 vfinspeqtncv 4554 nulnnn 4557 peano4 4558 addccan2 4560 phi11lem1 4596 phi011lem1 4599 phialllem1 4617 opeq 4620 elopab 4697 opelopab2a 4703 setconslem4 4735 setconslem6 4737 brsi 4762 epelc 4766 opeliunxp 4821 eliunxp 4822 opeliunxp2 4823 opbrop 4842 br1st 4859 br2nd 4860 brswap2 4861 ideqg2 4870 elres 4996 dfres2 5003 imai 5011 dfcnv2 5101 elxp4 5109 xpexr 5110 dmfex 5248 dffn5 5364 fvelrnb 5366 funimass4 5369 fvelimab 5371 fvun1 5380 fvopab4t 5386 fvopab3g 5387 fvopab3ig 5388 chfnrn 5400 fnasrn 5418 ffnfv 5428 f1elima 5475 opbr1st 5502 opbr2nd 5503 brswap 5510 xpnedisj 5514 eloprabga 5579 resoprab 5582 ov 5596 ovig 5598 ov6g 5601 ovg 5602 ovelrn 5609 oprssdm 5613 caovmo 5646 cbvmpt 5677 cbvmpt2x 5679 fmpt 5693 ovmpt2x 5713 fmpt2x 5731 elfix 5788 elfunsg 5831 clos1conn 5880 clos1basesuc 5883 dfnnc3 5886 frds 5936 fundmen 6044 enadjlem1 6060 enadj 6061 enprmaplem1 6077 enprmaplem5 6081 elncs 6120 eqnc2 6130 nnnc 6147 ncssfin 6152 ncspw1eu 6160 eqtc 6162 nntccl 6171 ceclb 6184 ce0ncpw1 6186 cecl 6187 nclecid 6198 le0nc 6201 addlecncs 6210 letc 6232 nclenn 6250 ncvsq 6257 nmembers1lem1 6269 nmembers1lem3 6271 spaccl 6287 spacind 6288 nchoicelem3 6292 nchoicelem16 6305 frecxp 6315 dmfrec 6317 fnfreclem3 6320 scancan 6332 |
Copyright terms: Public domain | W3C validator |