New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifeqor | GIF version |
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ifeqor | ⊢ ( if(φ, A, B) = A ∨ if(φ, A, B) = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3669 | . . . 4 ⊢ (φ → if(φ, A, B) = A) | |
2 | 1 | con3i 127 | . . 3 ⊢ (¬ if(φ, A, B) = A → ¬ φ) |
3 | iffalse 3670 | . . 3 ⊢ (¬ φ → if(φ, A, B) = B) | |
4 | 2, 3 | syl 15 | . 2 ⊢ (¬ if(φ, A, B) = A → if(φ, A, B) = B) |
5 | 4 | orri 365 | 1 ⊢ ( if(φ, A, B) = A ∨ if(φ, A, B) = B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: ifpr 3775 enprmaplem5 6081 |
Copyright terms: Public domain | W3C validator |