NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifid GIF version

Theorem ifid 3695
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifid if(φ, A, A) = A

Proof of Theorem ifid
StepHypRef Expression
1 iftrue 3669 . 2 (φ → if(φ, A, A) = A)
2 iffalse 3670 . 2 φ → if(φ, A, A) = A)
31, 2pm2.61i 156 1 if(φ, A, A) = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator