NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  expdimp GIF version

Theorem expdimp 426
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.)
Hypothesis
Ref Expression
exp3a.1 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
expdimp ((φ ψ) → (χθ))

Proof of Theorem expdimp
StepHypRef Expression
1 exp3a.1 . . 3 (φ → ((ψ χ) → θ))
21exp3a 425 . 2 (φ → (ψ → (χθ)))
32imp 418 1 ((φ ψ) → (χθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  rexlimdvv  2745  ralcom2  2776  reu6  3026  preaddccan2  4456  ltfinasym  4461  lenltfin  4470  vfinspsslem1  4551  phi11lem1  4596  fun11iun  5306  erth  5969  ltlenlec  6208  leltctr  6213  tlecg  6231
  Copyright terms: Public domain W3C validator