New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > expdimp | GIF version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Ref | Expression |
---|---|
expdimp | ⊢ ((φ ∧ ψ) → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
2 | 1 | exp3a 425 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ ψ) → (χ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: rexlimdvv 2745 ralcom2 2776 reu6 3026 preaddccan2 4456 ltfinasym 4461 lenltfin 4470 vfinspsslem1 4551 phi11lem1 4596 fun11iun 5306 erth 5969 ltlenlec 6208 leltctr 6213 tlecg 6231 |
Copyright terms: Public domain | W3C validator |