| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > spimt | GIF version | ||
| Description: Closed theorem form of spim 1975. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) |
| Ref | Expression |
|---|---|
| spimt | ⊢ ((Ⅎxψ ∧ ∀x(x = y → (φ → ψ))) → (∀xφ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnf1 1790 | . . . . 5 ⊢ ℲxℲxψ | |
| 2 | nfa1 1788 | . . . . 5 ⊢ Ⅎx∀xφ | |
| 3 | 1, 2 | nfan 1824 | . . . 4 ⊢ Ⅎx(Ⅎxψ ∧ ∀xφ) |
| 4 | sp 1747 | . . . . . . 7 ⊢ (∀xφ → φ) | |
| 5 | 4 | adantl 452 | . . . . . 6 ⊢ ((Ⅎxψ ∧ ∀xφ) → φ) |
| 6 | nfr 1761 | . . . . . . 7 ⊢ (Ⅎxψ → (ψ → ∀xψ)) | |
| 7 | 6 | adantr 451 | . . . . . 6 ⊢ ((Ⅎxψ ∧ ∀xφ) → (ψ → ∀xψ)) |
| 8 | 5, 7 | embantd 50 | . . . . 5 ⊢ ((Ⅎxψ ∧ ∀xφ) → ((φ → ψ) → ∀xψ)) |
| 9 | 8 | imim2d 48 | . . . 4 ⊢ ((Ⅎxψ ∧ ∀xφ) → ((x = y → (φ → ψ)) → (x = y → ∀xψ))) |
| 10 | 3, 9 | alimd 1764 | . . 3 ⊢ ((Ⅎxψ ∧ ∀xφ) → (∀x(x = y → (φ → ψ)) → ∀x(x = y → ∀xψ))) |
| 11 | 10 | impancom 427 | . 2 ⊢ ((Ⅎxψ ∧ ∀x(x = y → (φ → ψ))) → (∀xφ → ∀x(x = y → ∀xψ))) |
| 12 | ax9o 1950 | . 2 ⊢ (∀x(x = y → ∀xψ) → ψ) | |
| 13 | 11, 12 | syl6 29 | 1 ⊢ ((Ⅎxψ ∧ ∀x(x = y → (φ → ψ))) → (∀xφ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: spim 1975 equveli 1988 |
| Copyright terms: Public domain | W3C validator |