NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prepeano4 GIF version

Theorem prepeano4 4452
Description: Assuming a non-null successor, cardinal successor is one-to-one. Theorem X.1.19 of [Rosser] p. 526. (Contributed by SF, 18-Jan-2015.)
Assertion
Ref Expression
prepeano4 (((M Nn N Nn ) ((M +c 1c) = (N +c 1c) (M +c 1c) ≠ )) → M = N)

Proof of Theorem prepeano4
Dummy variables a b x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3560 . . 3 ((M +c 1c) ≠ a a (M +c 1c))
2 elsuc 4414 . . . . 5 (a (M +c 1c) ↔ b M x ba = (b ∪ {x}))
3 simplll 734 . . . . . . . 8 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → M Nn )
4 simpllr 735 . . . . . . . 8 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → N Nn )
5 simprl 732 . . . . . . . 8 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → b M)
6 simprr 733 . . . . . . . . . 10 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → x b)
7 vex 2863 . . . . . . . . . . 11 x V
87elcompl 3226 . . . . . . . . . 10 (x b ↔ ¬ x b)
96, 8sylib 188 . . . . . . . . 9 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → ¬ x b)
107elsuci 4415 . . . . . . . . . . . 12 ((b M ¬ x b) → (b ∪ {x}) (M +c 1c))
118, 10sylan2b 461 . . . . . . . . . . 11 ((b M x b) → (b ∪ {x}) (M +c 1c))
1211adantl 452 . . . . . . . . . 10 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → (b ∪ {x}) (M +c 1c))
13 simplr 731 . . . . . . . . . 10 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → (M +c 1c) = (N +c 1c))
1412, 13eleqtrd 2429 . . . . . . . . 9 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → (b ∪ {x}) (N +c 1c))
15 vex 2863 . . . . . . . . . 10 b V
1615, 7nnsucelr 4429 . . . . . . . . 9 ((N Nn x b (b ∪ {x}) (N +c 1c))) → b N)
174, 9, 14, 16syl12anc 1180 . . . . . . . 8 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → b N)
18 nnceleq 4431 . . . . . . . 8 (((M Nn N Nn ) (b M b N)) → M = N)
193, 4, 5, 17, 18syl22anc 1183 . . . . . . 7 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → M = N)
2019a1d 22 . . . . . 6 ((((M Nn N Nn ) (M +c 1c) = (N +c 1c)) (b M x b)) → (a = (b ∪ {x}) → M = N))
2120rexlimdvva 2746 . . . . 5 (((M Nn N Nn ) (M +c 1c) = (N +c 1c)) → (b M x ba = (b ∪ {x}) → M = N))
222, 21syl5bi 208 . . . 4 (((M Nn N Nn ) (M +c 1c) = (N +c 1c)) → (a (M +c 1c) → M = N))
2322exlimdv 1636 . . 3 (((M Nn N Nn ) (M +c 1c) = (N +c 1c)) → (a a (M +c 1c) → M = N))
241, 23syl5bi 208 . 2 (((M Nn N Nn ) (M +c 1c) = (N +c 1c)) → ((M +c 1c) ≠ M = N))
2524impr 602 1 (((M Nn N Nn ) ((M +c 1c) = (N +c 1c) (M +c 1c) ≠ )) → M = N)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  wne 2517  wrex 2616  ccompl 3206  cun 3208  c0 3551  {csn 3738  1cc1c 4135   Nn cnnc 4374   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-0c 4378  df-addc 4379  df-nnc 4380
This theorem is referenced by:  preaddccan2  4456  evenodddisj  4517  peano4  4558
  Copyright terms: Public domain W3C validator