New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inteqd | GIF version |
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqd.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
inteqd | ⊢ (φ → ∩A = ∩B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqd.1 | . 2 ⊢ (φ → A = B) | |
2 | inteq 3930 | . 2 ⊢ (A = B → ∩A = ∩B) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → ∩A = ∩B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-int 3928 |
This theorem is referenced by: intprg 3961 fniinfv 5373 |
Copyright terms: Public domain | W3C validator |