New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intnand | GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (φ → ¬ ψ) |
Ref | Expression |
---|---|
intnand | ⊢ (φ → ¬ (χ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (φ → ¬ ψ) | |
2 | simpr 447 | . 2 ⊢ ((χ ∧ ψ) → ψ) | |
3 | 1, 2 | nsyl 113 | 1 ⊢ (φ → ¬ (χ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: nnadjoinpw 4522 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |