NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intnand GIF version

Theorem intnand 882
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
Hypothesis
Ref Expression
intnand.1 (φ → ¬ ψ)
Assertion
Ref Expression
intnand (φ → ¬ (χ ψ))

Proof of Theorem intnand
StepHypRef Expression
1 intnand.1 . 2 (φ → ¬ ψ)
2 simpr 447 . 2 ((χ ψ) → ψ)
31, 2nsyl 113 1 (φ → ¬ (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  nnadjoinpw  4522  nmembers1lem3  6271
  Copyright terms: Public domain W3C validator