Step | Hyp | Ref
| Expression |
1 | | nnltp1c 6263 |
. . . . . . . . . . . 12
⊢ (A ∈ Nn → A
<c (A +c
1c)) |
2 | | nnnc 6147 |
. . . . . . . . . . . . 13
⊢ (A ∈ Nn → A ∈ NC
) |
3 | | peano2 4404 |
. . . . . . . . . . . . . 14
⊢ (A ∈ Nn → (A
+c 1c) ∈
Nn ) |
4 | | nnnc 6147 |
. . . . . . . . . . . . . 14
⊢ ((A +c 1c) ∈ Nn → (A +c 1c) ∈ NC
) |
5 | 3, 4 | syl 15 |
. . . . . . . . . . . . 13
⊢ (A ∈ Nn → (A
+c 1c) ∈
NC ) |
6 | | ltlenlec 6208 |
. . . . . . . . . . . . 13
⊢ ((A ∈ NC ∧ (A +c 1c) ∈ NC ) →
(A <c (A +c 1c) ↔
(A ≤c (A +c 1c) ∧ ¬ (A
+c 1c) ≤c A))) |
7 | 2, 5, 6 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ (A ∈ Nn → (A
<c (A +c
1c) ↔ (A
≤c (A +c
1c) ∧ ¬ (A +c 1c)
≤c A))) |
8 | 1, 7 | mpbid 201 |
. . . . . . . . . . 11
⊢ (A ∈ Nn → (A
≤c (A +c
1c) ∧ ¬ (A +c 1c)
≤c A)) |
9 | 8 | simprd 449 |
. . . . . . . . . 10
⊢ (A ∈ Nn → ¬ (A
+c 1c) ≤c A) |
10 | 9 | adantr 451 |
. . . . . . . . 9
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ (A
+c 1c) ≤c A) |
11 | 10 | intnand 882 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ (1c ≤c
(A +c
1c) ∧ (A +c 1c)
≤c A)) |
12 | 11 | a1d 22 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((A
+c 1c) ∈
Nn → ¬ (1c
≤c (A +c
1c) ∧ (A +c 1c)
≤c A))) |
13 | | breq2 4644 |
. . . . . . . . . . 11
⊢ (m = (A
+c 1c) → (1c
≤c m ↔
1c ≤c (A
+c 1c))) |
14 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (m = (A
+c 1c) → (m ≤c A ↔ (A
+c 1c) ≤c A)) |
15 | 13, 14 | anbi12d 691 |
. . . . . . . . . 10
⊢ (m = (A
+c 1c) → ((1c
≤c m ∧ m
≤c A) ↔
(1c ≤c (A
+c 1c) ∧
(A +c
1c) ≤c A))) |
16 | 15 | elrab 2995 |
. . . . . . . . 9
⊢ ((A +c 1c) ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ↔ ((A
+c 1c) ∈
Nn ∧
(1c ≤c (A
+c 1c) ∧
(A +c
1c) ≤c A))) |
17 | 16 | notbii 287 |
. . . . . . . 8
⊢ (¬ (A +c 1c) ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ↔ ¬ ((A +c 1c) ∈ Nn ∧ (1c ≤c (A +c 1c) ∧ (A
+c 1c) ≤c A))) |
18 | | imnan 411 |
. . . . . . . 8
⊢ (((A +c 1c) ∈ Nn → ¬
(1c ≤c (A
+c 1c) ∧
(A +c
1c) ≤c A))
↔ ¬ ((A +c
1c) ∈ Nn ∧
(1c ≤c (A
+c 1c) ∧
(A +c
1c) ≤c A))) |
19 | 17, 18 | bitr4i 243 |
. . . . . . 7
⊢ (¬ (A +c 1c) ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ↔ ((A
+c 1c) ∈
Nn → ¬ (1c
≤c (A +c
1c) ∧ (A +c 1c)
≤c A))) |
20 | 12, 19 | sylibr 203 |
. . . . . 6
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ¬ (A
+c 1c) ∈
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)}) |
21 | 3 | adantr 451 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (A
+c 1c) ∈
Nn ) |
22 | | elcomplg 3219 |
. . . . . . 7
⊢ ((A +c 1c) ∈ Nn → ((A +c 1c) ∈ ∼ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ↔ ¬ (A +c 1c) ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)})) |
23 | 21, 22 | syl 15 |
. . . . . 6
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((A
+c 1c) ∈
∼ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ↔ ¬ (A +c 1c) ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)})) |
24 | 20, 23 | mpbird 223 |
. . . . 5
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (A
+c 1c) ∈
∼ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)}) |
25 | | nnnc 6147 |
. . . . . . . . . . . . . 14
⊢ (x ∈ Nn → x ∈ NC
) |
26 | | ncslesuc 6268 |
. . . . . . . . . . . . . 14
⊢ ((x ∈ NC ∧ A ∈ NC ) → (x
≤c (A +c
1c) ↔ (x
≤c A
∨ x = (A +c
1c)))) |
27 | 25, 2, 26 | syl2an 463 |
. . . . . . . . . . . . 13
⊢ ((x ∈ Nn ∧ A ∈ Nn ) → (x
≤c (A +c
1c) ↔ (x
≤c A
∨ x = (A +c
1c)))) |
28 | 27 | expcom 424 |
. . . . . . . . . . . 12
⊢ (A ∈ Nn → (x ∈ Nn → (x ≤c (A +c 1c) ↔
(x ≤c A ∨ x = (A
+c 1c))))) |
29 | 28 | adantrd 454 |
. . . . . . . . . . 11
⊢ (A ∈ Nn → ((x ∈ Nn ∧ 1c ≤c x) → (x
≤c (A +c
1c) ↔ (x
≤c A
∨ x = (A +c
1c))))) |
30 | 29 | adantr 451 |
. . . . . . . . . 10
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((x
∈ Nn ∧ 1c ≤c x) → (x
≤c (A +c
1c) ↔ (x
≤c A
∨ x = (A +c
1c))))) |
31 | 30 | pm5.32d 620 |
. . . . . . . . 9
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (((x
∈ Nn ∧ 1c ≤c x) ∧ x ≤c (A +c 1c)) ↔
((x ∈
Nn ∧
1c ≤c x)
∧ (x
≤c A
∨ x = (A +c
1c))))) |
32 | | anass 630 |
. . . . . . . . 9
⊢ (((x ∈ Nn ∧
1c ≤c x)
∧ x
≤c (A +c
1c)) ↔ (x ∈ Nn ∧ (1c ≤c x ∧ x ≤c (A +c
1c)))) |
33 | | andi 837 |
. . . . . . . . . 10
⊢ (((x ∈ Nn ∧
1c ≤c x)
∧ (x
≤c A
∨ x = (A +c 1c)))
↔ (((x ∈ Nn ∧ 1c ≤c x) ∧ x ≤c A) ∨ ((x ∈ Nn ∧
1c ≤c x)
∧ x =
(A +c
1c)))) |
34 | | anass 630 |
. . . . . . . . . . 11
⊢ (((x ∈ Nn ∧
1c ≤c x)
∧ x
≤c A) ↔ (x ∈ Nn ∧
(1c ≤c x
∧ x
≤c A))) |
35 | 34 | orbi1i 506 |
. . . . . . . . . 10
⊢ ((((x ∈ Nn ∧
1c ≤c x)
∧ x
≤c A)
∨ ((x ∈ Nn ∧ 1c ≤c x) ∧ x = (A
+c 1c))) ↔ ((x ∈ Nn ∧
(1c ≤c x
∧ x
≤c A))
∨ ((x ∈ Nn ∧ 1c ≤c x) ∧ x = (A
+c 1c)))) |
36 | 33, 35 | bitri 240 |
. . . . . . . . 9
⊢ (((x ∈ Nn ∧
1c ≤c x)
∧ (x
≤c A
∨ x = (A +c 1c)))
↔ ((x ∈ Nn ∧ (1c ≤c x ∧ x ≤c A)) ∨ ((x ∈ Nn ∧
1c ≤c x)
∧ x =
(A +c
1c)))) |
37 | 31, 32, 36 | 3bitr3g 278 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((x
∈ Nn ∧ (1c ≤c x ∧ x ≤c (A +c 1c)))
↔ ((x ∈ Nn ∧ (1c ≤c x ∧ x ≤c A)) ∨ ((x ∈ Nn ∧
1c ≤c x)
∧ x =
(A +c
1c))))) |
38 | | 1cnc 6140 |
. . . . . . . . . . . . . . . 16
⊢
1c ∈ NC |
39 | | addlecncs 6210 |
. . . . . . . . . . . . . . . 16
⊢
((1c ∈ NC ∧ A ∈ NC ) → 1c ≤c
(1c +c A)) |
40 | 38, 2, 39 | sylancr 644 |
. . . . . . . . . . . . . . 15
⊢ (A ∈ Nn → 1c ≤c
(1c +c A)) |
41 | | addccom 4407 |
. . . . . . . . . . . . . . 15
⊢ (A +c 1c) =
(1c +c A) |
42 | 40, 41 | syl6breqr 4680 |
. . . . . . . . . . . . . 14
⊢ (A ∈ Nn → 1c ≤c
(A +c
1c)) |
43 | 3, 42 | jca 518 |
. . . . . . . . . . . . 13
⊢ (A ∈ Nn → ((A
+c 1c) ∈
Nn ∧
1c ≤c (A
+c 1c))) |
44 | | eleq1 2413 |
. . . . . . . . . . . . . 14
⊢ (x = (A
+c 1c) → (x ∈ Nn ↔ (A
+c 1c) ∈
Nn )) |
45 | | breq2 4644 |
. . . . . . . . . . . . . 14
⊢ (x = (A
+c 1c) → (1c
≤c x ↔
1c ≤c (A
+c 1c))) |
46 | 44, 45 | anbi12d 691 |
. . . . . . . . . . . . 13
⊢ (x = (A
+c 1c) → ((x ∈ Nn ∧
1c ≤c x)
↔ ((A +c
1c) ∈ Nn ∧
1c ≤c (A
+c 1c)))) |
47 | 43, 46 | syl5ibrcom 213 |
. . . . . . . . . . . 12
⊢ (A ∈ Nn → (x =
(A +c
1c) → (x ∈ Nn ∧ 1c ≤c x))) |
48 | 47 | adantr 451 |
. . . . . . . . . . 11
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (x =
(A +c
1c) → (x ∈ Nn ∧ 1c ≤c x))) |
49 | 48 | pm4.71rd 616 |
. . . . . . . . . 10
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (x =
(A +c
1c) ↔ ((x ∈ Nn ∧ 1c ≤c x) ∧ x = (A
+c 1c)))) |
50 | 49 | bicomd 192 |
. . . . . . . . 9
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (((x
∈ Nn ∧ 1c ≤c x) ∧ x = (A
+c 1c)) ↔ x = (A
+c 1c))) |
51 | 50 | orbi2d 682 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (((x
∈ Nn ∧ (1c ≤c x ∧ x ≤c A)) ∨ ((x ∈ Nn ∧
1c ≤c x)
∧ x =
(A +c
1c))) ↔ ((x ∈ Nn ∧ (1c ≤c x ∧ x ≤c A)) ∨ x = (A
+c 1c)))) |
52 | 37, 51 | bitrd 244 |
. . . . . . 7
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ((x
∈ Nn ∧ (1c ≤c x ∧ x ≤c (A +c 1c)))
↔ ((x ∈ Nn ∧ (1c ≤c x ∧ x ≤c A)) ∨ x = (A
+c 1c)))) |
53 | | breq2 4644 |
. . . . . . . . 9
⊢ (m = x →
(1c ≤c m
↔ 1c ≤c x)) |
54 | | breq1 4643 |
. . . . . . . . 9
⊢ (m = x →
(m ≤c (A +c 1c) ↔
x ≤c (A +c
1c))) |
55 | 53, 54 | anbi12d 691 |
. . . . . . . 8
⊢ (m = x →
((1c ≤c m
∧ m
≤c (A +c
1c)) ↔ (1c ≤c x ∧ x ≤c (A +c
1c)))) |
56 | 55 | elrab 2995 |
. . . . . . 7
⊢ (x ∈ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} ↔ (x ∈ Nn ∧ (1c ≤c x ∧ x ≤c (A +c
1c)))) |
57 | | elun 3221 |
. . . . . . . 8
⊢ (x ∈ ({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {(A +c 1c)})
↔ (x ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∨ x ∈ {(A +c
1c)})) |
58 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (m = x →
(m ≤c A ↔ x
≤c A)) |
59 | 53, 58 | anbi12d 691 |
. . . . . . . . . 10
⊢ (m = x →
((1c ≤c m
∧ m
≤c A) ↔
(1c ≤c x
∧ x
≤c A))) |
60 | 59 | elrab 2995 |
. . . . . . . . 9
⊢ (x ∈ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ↔ (x ∈ Nn ∧
(1c ≤c x
∧ x
≤c A))) |
61 | | elsn 3749 |
. . . . . . . . 9
⊢ (x ∈ {(A +c 1c)} ↔
x = (A
+c 1c)) |
62 | 60, 61 | orbi12i 507 |
. . . . . . . 8
⊢ ((x ∈ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)}
∨ x ∈ {(A
+c 1c)}) ↔ ((x ∈ Nn ∧
(1c ≤c x
∧ x
≤c A))
∨ x = (A +c
1c))) |
63 | 57, 62 | bitri 240 |
. . . . . . 7
⊢ (x ∈ ({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {(A +c 1c)})
↔ ((x ∈ Nn ∧ (1c ≤c x ∧ x ≤c A)) ∨ x = (A
+c 1c))) |
64 | 52, 56, 63 | 3bitr4g 279 |
. . . . . 6
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (x ∈ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))}
↔ x ∈ ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∪ {(A
+c 1c)}))) |
65 | 64 | eqrdv 2351 |
. . . . 5
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
({m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {(A +c
1c)})) |
66 | | sneq 3745 |
. . . . . . . 8
⊢ (y = (A
+c 1c) → {y} = {(A
+c 1c)}) |
67 | 66 | uneq2d 3419 |
. . . . . . 7
⊢ (y = (A
+c 1c) → ({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {y}) = ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∪ {(A
+c 1c)})) |
68 | 67 | eqeq2d 2364 |
. . . . . 6
⊢ (y = (A
+c 1c) → ({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} = ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∪ {y})
↔ {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
({m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {(A +c
1c)}))) |
69 | 68 | rspcev 2956 |
. . . . 5
⊢ (((A +c 1c) ∈ ∼ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∧ {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} = ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∪ {(A
+c 1c)})) → ∃y ∈ ∼ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
({m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {y})) |
70 | 24, 65, 69 | syl2anc 642 |
. . . 4
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ∃y ∈ ∼
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} = ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∪ {y})) |
71 | | compleq 3244 |
. . . . . 6
⊢ (x = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} → ∼ x = ∼ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c A)}) |
72 | | uneq1 3412 |
. . . . . . 7
⊢ (x = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} → (x
∪ {y}) = ({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {y})) |
73 | 72 | eqeq2d 2364 |
. . . . . 6
⊢ (x = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} → ({m
∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
(x ∪ {y}) ↔ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
({m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {y}))) |
74 | 71, 73 | rexeqbidv 2821 |
. . . . 5
⊢ (x = {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} → (∃y ∈ ∼ x{m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
(x ∪ {y}) ↔ ∃y ∈ ∼ {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} {m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
({m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} ∪ {y}))) |
75 | 74 | rspcev 2956 |
. . . 4
⊢ (({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∈ B ∧ ∃y ∈ ∼
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c A)} {m ∈ Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} = ({m ∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∪ {y}))
→ ∃x ∈ B ∃y ∈ ∼ x{m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
(x ∪ {y})) |
76 | 70, 75 | sylan2 460 |
. . 3
⊢ (({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∈ B ∧ (A ∈ Nn ∧ B ∈ Nn )) → ∃x ∈ B ∃y ∈ ∼ x{m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
(x ∪ {y})) |
77 | | elsuc 4414 |
. . 3
⊢ ({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} ∈ (B +c 1c) ↔
∃x ∈ B ∃y ∈ ∼ x{m ∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} =
(x ∪ {y})) |
78 | 76, 77 | sylibr 203 |
. 2
⊢ (({m ∈ Nn ∣
(1c ≤c m
∧ m
≤c A)} ∈ B ∧ (A ∈ Nn ∧ B ∈ Nn )) →
{m ∈
Nn ∣
(1c ≤c m
∧ m
≤c (A +c
1c))} ∈ (B +c
1c)) |
79 | 78 | expcom 424 |
1
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → ({m
∈ Nn ∣ (1c ≤c m ∧ m ≤c A)} ∈ B → {m
∈ Nn ∣ (1c ≤c m ∧ m ≤c (A +c 1c))} ∈ (B
+c 1c))) |