Step | Hyp | Ref
| Expression |
1 | | pwadjoin 4120 |
. 2
⊢ ℘(A ∪
{X}) = (℘A ∪
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}) |
2 | | simp3 957 |
. . 3
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
℘A
∈ N) |
3 | | simp1r 980 |
. . . 4
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
N ∈ Nn ) |
4 | | simp2r 982 |
. . . . 5
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
X ∈ ∼
A) |
5 | | unipw 4118 |
. . . . . 6
⊢ ∪℘A = A |
6 | 5 | compleqi 3245 |
. . . . 5
⊢ ∼ ∪℘A = ∼ A |
7 | 4, 6 | syl6eleqr 2444 |
. . . 4
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
X ∈ ∼
∪℘A) |
8 | | nnadjoin 4521 |
. . . 4
⊢ ((N ∈ Nn ∧ ℘A ∈ N ∧ X ∈ ∼ ∪℘A) →
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}
∈ N) |
9 | 3, 2, 7, 8 | syl3anc 1182 |
. . 3
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}
∈ N) |
10 | | elcomplg 3219 |
. . . . . . . . 9
⊢ (X ∈ ∼ A → (X
∈ ∼ A
↔ ¬ X ∈ A)) |
11 | 10 | ibi 232 |
. . . . . . . 8
⊢ (X ∈ ∼ A → ¬ X
∈ A) |
12 | 4, 11 | syl 15 |
. . . . . . 7
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
¬ X ∈
A) |
13 | | snssg 3845 |
. . . . . . . 8
⊢ (X ∈ ∼ A → (X
∈ A
↔ {X} ⊆ A)) |
14 | 4, 13 | syl 15 |
. . . . . . 7
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
(X ∈
A ↔ {X} ⊆ A)) |
15 | 12, 14 | mtbid 291 |
. . . . . 6
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
¬ {X} ⊆ A) |
16 | 15 | intnand 882 |
. . . . 5
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
¬ (b ⊆ A ∧ {X} ⊆ A)) |
17 | 16 | ralrimivw 2699 |
. . . 4
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
∀b
∈ ℘
A ¬ (b ⊆ A ∧ {X} ⊆ A)) |
18 | | disjr 3593 |
. . . . 5
⊢ ((℘A ∩
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}) =
∅ ↔ ∀t ∈ {a ∣ ∃b ∈ ℘ Aa = (b ∪
{X})} ¬ t ∈ ℘A) |
19 | | eqeq1 2359 |
. . . . . . 7
⊢ (a = t →
(a = (b
∪ {X}) ↔ t = (b ∪
{X}))) |
20 | 19 | rexbidv 2636 |
. . . . . 6
⊢ (a = t →
(∃b
∈ ℘
Aa =
(b ∪ {X}) ↔ ∃b ∈ ℘ At = (b ∪ {X}))) |
21 | 20 | ralab 2998 |
. . . . 5
⊢ (∀t ∈ {a ∣ ∃b ∈ ℘ Aa = (b ∪
{X})} ¬ t ∈ ℘A ↔
∀t(∃b ∈ ℘ At = (b ∪
{X}) → ¬ t ∈ ℘A)) |
22 | | ralcom4 2878 |
. . . . . 6
⊢ (∀b ∈ ℘ A∀t(t = (b ∪ {X})
→ ¬ t ∈ ℘A) ↔ ∀t∀b ∈ ℘ A(t = (b ∪ {X})
→ ¬ t ∈ ℘A)) |
23 | | vex 2863 |
. . . . . . . . . 10
⊢ b ∈
V |
24 | | snex 4112 |
. . . . . . . . . 10
⊢ {X} ∈
V |
25 | 23, 24 | unex 4107 |
. . . . . . . . 9
⊢ (b ∪ {X})
∈ V |
26 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (t = (b ∪
{X}) → (t ∈ ℘A ↔
(b ∪ {X}) ∈ ℘A)) |
27 | 26 | notbid 285 |
. . . . . . . . 9
⊢ (t = (b ∪
{X}) → (¬ t ∈ ℘A ↔
¬ (b ∪ {X}) ∈ ℘A)) |
28 | 25, 27 | ceqsalv 2886 |
. . . . . . . 8
⊢ (∀t(t = (b ∪
{X}) → ¬ t ∈ ℘A) ↔
¬ (b ∪ {X}) ∈ ℘A) |
29 | 25 | elpw 3729 |
. . . . . . . . 9
⊢ ((b ∪ {X})
∈ ℘A ↔
(b ∪ {X}) ⊆ A) |
30 | | unss 3438 |
. . . . . . . . 9
⊢ ((b ⊆ A ∧ {X} ⊆ A) ↔ (b
∪ {X}) ⊆ A) |
31 | 29, 30 | bitr4i 243 |
. . . . . . . 8
⊢ ((b ∪ {X})
∈ ℘A ↔
(b ⊆
A ∧
{X} ⊆
A)) |
32 | 28, 31 | xchbinx 301 |
. . . . . . 7
⊢ (∀t(t = (b ∪
{X}) → ¬ t ∈ ℘A) ↔
¬ (b ⊆ A ∧ {X} ⊆ A)) |
33 | 32 | ralbii 2639 |
. . . . . 6
⊢ (∀b ∈ ℘ A∀t(t = (b ∪ {X})
→ ¬ t ∈ ℘A) ↔ ∀b ∈ ℘ A ¬ (b ⊆ A ∧ {X} ⊆ A)) |
34 | | r19.23v 2731 |
. . . . . . 7
⊢ (∀b ∈ ℘ A(t = (b ∪ {X})
→ ¬ t ∈ ℘A) ↔ (∃b ∈ ℘ At = (b ∪ {X})
→ ¬ t ∈ ℘A)) |
35 | 34 | albii 1566 |
. . . . . 6
⊢ (∀t∀b ∈ ℘ A(t = (b ∪ {X})
→ ¬ t ∈ ℘A) ↔ ∀t(∃b ∈ ℘ At = (b ∪ {X})
→ ¬ t ∈ ℘A)) |
36 | 22, 33, 35 | 3bitr3ri 267 |
. . . . 5
⊢ (∀t(∃b ∈ ℘ At = (b ∪ {X})
→ ¬ t ∈ ℘A) ↔ ∀b ∈ ℘ A ¬ (b ⊆ A ∧ {X} ⊆ A)) |
37 | 18, 21, 36 | 3bitri 262 |
. . . 4
⊢ ((℘A ∩
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}) =
∅ ↔ ∀b ∈ ℘ A ¬ (b ⊆ A ∧ {X} ⊆ A)) |
38 | 17, 37 | sylibr 203 |
. . 3
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
(℘A
∩ {a ∣ ∃b ∈ ℘ Aa = (b ∪
{X})}) = ∅) |
39 | | eladdci 4400 |
. . 3
⊢ ((℘A ∈ N ∧ {a ∣ ∃b ∈ ℘ Aa = (b ∪
{X})} ∈
N ∧ (℘A ∩
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})}) =
∅) → (℘A ∪
{a ∣
∃b ∈ ℘ Aa = (b ∪ {X})})
∈ (N
+c N)) |
40 | 2, 9, 38, 39 | syl3anc 1182 |
. 2
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
(℘A
∪ {a ∣ ∃b ∈ ℘ Aa = (b ∪
{X})}) ∈
(N +c N)) |
41 | 1, 40 | syl5eqel 2437 |
1
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (A ∈ M ∧ X ∈ ∼ A) ∧ ℘A ∈ N) →
℘(A
∪ {X}) ∈ (N
+c N)) |