NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nnadjoinpw GIF version

Theorem nnadjoinpw 4522
Description: Adjoining an element to a power class. Theorem X.1.40 of [Rosser] p. 530. (Contributed by SF, 27-Jan-2015.)
Assertion
Ref Expression
nnadjoinpw (((M Nn N Nn ) (A M X A) A N) → (A ∪ {X}) (N +c N))

Proof of Theorem nnadjoinpw
Dummy variables a b t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwadjoin 4120 . 2 (A ∪ {X}) = (A ∪ {a b Aa = (b ∪ {X})})
2 simp3 957 . . 3 (((M Nn N Nn ) (A M X A) A N) → A N)
3 simp1r 980 . . . 4 (((M Nn N Nn ) (A M X A) A N) → N Nn )
4 simp2r 982 . . . . 5 (((M Nn N Nn ) (A M X A) A N) → X A)
5 unipw 4118 . . . . . 6 A = A
65compleqi 3245 . . . . 5 A = ∼ A
74, 6syl6eleqr 2444 . . . 4 (((M Nn N Nn ) (A M X A) A N) → X A)
8 nnadjoin 4521 . . . 4 ((N Nn A N X A) → {a b Aa = (b ∪ {X})} N)
93, 2, 7, 8syl3anc 1182 . . 3 (((M Nn N Nn ) (A M X A) A N) → {a b Aa = (b ∪ {X})} N)
10 elcomplg 3219 . . . . . . . . 9 (X A → (X A ↔ ¬ X A))
1110ibi 232 . . . . . . . 8 (X A → ¬ X A)
124, 11syl 15 . . . . . . 7 (((M Nn N Nn ) (A M X A) A N) → ¬ X A)
13 snssg 3845 . . . . . . . 8 (X A → (X A ↔ {X} A))
144, 13syl 15 . . . . . . 7 (((M Nn N Nn ) (A M X A) A N) → (X A ↔ {X} A))
1512, 14mtbid 291 . . . . . 6 (((M Nn N Nn ) (A M X A) A N) → ¬ {X} A)
1615intnand 882 . . . . 5 (((M Nn N Nn ) (A M X A) A N) → ¬ (b A {X} A))
1716ralrimivw 2699 . . . 4 (((M Nn N Nn ) (A M X A) A N) → b A ¬ (b A {X} A))
18 disjr 3593 . . . . 5 ((A ∩ {a b Aa = (b ∪ {X})}) = t {a b Aa = (b ∪ {X})} ¬ t A)
19 eqeq1 2359 . . . . . . 7 (a = t → (a = (b ∪ {X}) ↔ t = (b ∪ {X})))
2019rexbidv 2636 . . . . . 6 (a = t → (b Aa = (b ∪ {X}) ↔ b At = (b ∪ {X})))
2120ralab 2998 . . . . 5 (t {a b Aa = (b ∪ {X})} ¬ t At(b At = (b ∪ {X}) → ¬ t A))
22 ralcom4 2878 . . . . . 6 (b At(t = (b ∪ {X}) → ¬ t A) ↔ tb A(t = (b ∪ {X}) → ¬ t A))
23 vex 2863 . . . . . . . . . 10 b V
24 snex 4112 . . . . . . . . . 10 {X} V
2523, 24unex 4107 . . . . . . . . 9 (b ∪ {X}) V
26 eleq1 2413 . . . . . . . . . 10 (t = (b ∪ {X}) → (t A ↔ (b ∪ {X}) A))
2726notbid 285 . . . . . . . . 9 (t = (b ∪ {X}) → (¬ t A ↔ ¬ (b ∪ {X}) A))
2825, 27ceqsalv 2886 . . . . . . . 8 (t(t = (b ∪ {X}) → ¬ t A) ↔ ¬ (b ∪ {X}) A)
2925elpw 3729 . . . . . . . . 9 ((b ∪ {X}) A ↔ (b ∪ {X}) A)
30 unss 3438 . . . . . . . . 9 ((b A {X} A) ↔ (b ∪ {X}) A)
3129, 30bitr4i 243 . . . . . . . 8 ((b ∪ {X}) A ↔ (b A {X} A))
3228, 31xchbinx 301 . . . . . . 7 (t(t = (b ∪ {X}) → ¬ t A) ↔ ¬ (b A {X} A))
3332ralbii 2639 . . . . . 6 (b At(t = (b ∪ {X}) → ¬ t A) ↔ b A ¬ (b A {X} A))
34 r19.23v 2731 . . . . . . 7 (b A(t = (b ∪ {X}) → ¬ t A) ↔ (b At = (b ∪ {X}) → ¬ t A))
3534albii 1566 . . . . . 6 (tb A(t = (b ∪ {X}) → ¬ t A) ↔ t(b At = (b ∪ {X}) → ¬ t A))
3622, 33, 353bitr3ri 267 . . . . 5 (t(b At = (b ∪ {X}) → ¬ t A) ↔ b A ¬ (b A {X} A))
3718, 21, 363bitri 262 . . . 4 ((A ∩ {a b Aa = (b ∪ {X})}) = b A ¬ (b A {X} A))
3817, 37sylibr 203 . . 3 (((M Nn N Nn ) (A M X A) A N) → (A ∩ {a b Aa = (b ∪ {X})}) = )
39 eladdci 4400 . . 3 ((A N {a b Aa = (b ∪ {X})} N (A ∩ {a b Aa = (b ∪ {X})}) = ) → (A ∪ {a b Aa = (b ∪ {X})}) (N +c N))
402, 9, 38, 39syl3anc 1182 . 2 (((M Nn N Nn ) (A M X A) A N) → (A ∪ {a b Aa = (b ∪ {X})}) (N +c N))
411, 40syl5eqel 2437 1 (((M Nn N Nn ) (A M X A) A N) → (A ∪ {X}) (N +c N))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   w3a 934  wal 1540   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616  ccompl 3206  cun 3208  cin 3209   wss 3258  c0 3551  cpw 3723  {csn 3738  cuni 3892   Nn cnnc 4374   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-0c 4378  df-addc 4379  df-nnc 4380
This theorem is referenced by:  nnpweq  4524  sfindbl  4531
  Copyright terms: Public domain W3C validator