New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rab0 | GIF version |
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
rab0 | ⊢ {x ∈ ∅ ∣ φ} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1676 | . . . . 5 ⊢ x = x | |
2 | noel 3555 | . . . . . 6 ⊢ ¬ x ∈ ∅ | |
3 | 2 | intnanr 881 | . . . . 5 ⊢ ¬ (x ∈ ∅ ∧ φ) |
4 | 1, 3 | 2th 230 | . . . 4 ⊢ (x = x ↔ ¬ (x ∈ ∅ ∧ φ)) |
5 | 4 | con2bii 322 | . . 3 ⊢ ((x ∈ ∅ ∧ φ) ↔ ¬ x = x) |
6 | 5 | abbii 2466 | . 2 ⊢ {x ∣ (x ∈ ∅ ∧ φ)} = {x ∣ ¬ x = x} |
7 | df-rab 2624 | . 2 ⊢ {x ∈ ∅ ∣ φ} = {x ∣ (x ∈ ∅ ∧ φ)} | |
8 | dfnul2 3553 | . 2 ⊢ ∅ = {x ∣ ¬ x = x} | |
9 | 6, 7, 8 | 3eqtr4i 2383 | 1 ⊢ {x ∈ ∅ ∣ φ} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |