Proof of Theorem nfimdOLD
Step | Hyp | Ref
| Expression |
1 | | nfimd.1 |
. 2
⊢ (φ → Ⅎxψ) |
2 | | nfimd.2 |
. 2
⊢ (φ → Ⅎxχ) |
3 | | nfa1 1788 |
. . . . 5
⊢ Ⅎx∀x(ψ →
∀xψ) |
4 | | hbnt 1775 |
. . . . . 6
⊢ (∀x(ψ → ∀xψ) → (¬ ψ → ∀x ¬
ψ)) |
5 | | pm2.21 100 |
. . . . . . . . . . 11
⊢ (¬ ψ → (ψ → χ)) |
6 | 5 | alimi 1559 |
. . . . . . . . . 10
⊢ (∀x ¬
ψ → ∀x(ψ → χ)) |
7 | 6 | imim2i 13 |
. . . . . . . . 9
⊢ ((¬ ψ → ∀x ¬
ψ) → (¬ ψ → ∀x(ψ → χ))) |
8 | 7 | adantr 451 |
. . . . . . . 8
⊢ (((¬ ψ → ∀x ¬
ψ) ∧
(χ → ∀xχ)) → (¬ ψ → ∀x(ψ → χ))) |
9 | | ax-1 6 |
. . . . . . . . . . 11
⊢ (χ → (ψ → χ)) |
10 | 9 | alimi 1559 |
. . . . . . . . . 10
⊢ (∀xχ → ∀x(ψ → χ)) |
11 | 10 | imim2i 13 |
. . . . . . . . 9
⊢ ((χ → ∀xχ) → (χ → ∀x(ψ → χ))) |
12 | 11 | adantl 452 |
. . . . . . . 8
⊢ (((¬ ψ → ∀x ¬
ψ) ∧
(χ → ∀xχ)) → (χ → ∀x(ψ → χ))) |
13 | 8, 12 | jad 154 |
. . . . . . 7
⊢ (((¬ ψ → ∀x ¬
ψ) ∧
(χ → ∀xχ)) → ((ψ → χ) → ∀x(ψ → χ))) |
14 | 13 | ex 423 |
. . . . . 6
⊢ ((¬ ψ → ∀x ¬
ψ) → ((χ → ∀xχ) → ((ψ → χ) → ∀x(ψ → χ)))) |
15 | 4, 14 | syl 15 |
. . . . 5
⊢ (∀x(ψ → ∀xψ) → ((χ → ∀xχ) → ((ψ → χ) → ∀x(ψ → χ)))) |
16 | 3, 15 | alimd 1764 |
. . . 4
⊢ (∀x(ψ → ∀xψ) → (∀x(χ → ∀xχ) → ∀x((ψ → χ) → ∀x(ψ → χ)))) |
17 | 16 | imp 418 |
. . 3
⊢ ((∀x(ψ → ∀xψ) ∧ ∀x(χ → ∀xχ)) → ∀x((ψ → χ) → ∀x(ψ → χ))) |
18 | | df-nf 1545 |
. . . 4
⊢ (Ⅎxψ ↔
∀x(ψ →
∀xψ)) |
19 | | df-nf 1545 |
. . . 4
⊢ (Ⅎxχ ↔
∀x(χ →
∀xχ)) |
20 | 18, 19 | anbi12i 678 |
. . 3
⊢ ((Ⅎxψ ∧ Ⅎxχ) ↔ (∀x(ψ → ∀xψ) ∧ ∀x(χ → ∀xχ))) |
21 | | df-nf 1545 |
. . 3
⊢ (Ⅎx(ψ →
χ) ↔ ∀x((ψ → χ) → ∀x(ψ → χ))) |
22 | 17, 20, 21 | 3imtr4i 257 |
. 2
⊢ ((Ⅎxψ ∧ Ⅎxχ) → Ⅎx(ψ →
χ)) |
23 | 1, 2, 22 | syl2anc 642 |
1
⊢ (φ → Ⅎx(ψ →
χ)) |