Proof of Theorem ax11indi
Step | Hyp | Ref
| Expression |
1 | | ax11indn.1 |
. . . . . 6
⊢ (¬ ∀x x = y →
(x = y
→ (φ → ∀x(x = y →
φ)))) |
2 | 1 | ax11indn 2195 |
. . . . 5
⊢ (¬ ∀x x = y →
(x = y
→ (¬ φ → ∀x(x = y →
¬ φ)))) |
3 | 2 | imp 418 |
. . . 4
⊢ ((¬ ∀x x = y ∧ x = y) → (¬ φ → ∀x(x = y →
¬ φ))) |
4 | | pm2.21 100 |
. . . . . 6
⊢ (¬ φ → (φ → ψ)) |
5 | 4 | imim2i 13 |
. . . . 5
⊢ ((x = y →
¬ φ) → (x = y →
(φ → ψ))) |
6 | 5 | alimi 1559 |
. . . 4
⊢ (∀x(x = y →
¬ φ) → ∀x(x = y →
(φ → ψ))) |
7 | 3, 6 | syl6 29 |
. . 3
⊢ ((¬ ∀x x = y ∧ x = y) → (¬ φ → ∀x(x = y →
(φ → ψ)))) |
8 | | ax11indi.2 |
. . . . 5
⊢ (¬ ∀x x = y →
(x = y
→ (ψ → ∀x(x = y →
ψ)))) |
9 | 8 | imp 418 |
. . . 4
⊢ ((¬ ∀x x = y ∧ x = y) → (ψ
→ ∀x(x = y → ψ))) |
10 | | ax-1 6 |
. . . . . 6
⊢ (ψ → (φ → ψ)) |
11 | 10 | imim2i 13 |
. . . . 5
⊢ ((x = y →
ψ) → (x = y →
(φ → ψ))) |
12 | 11 | alimi 1559 |
. . . 4
⊢ (∀x(x = y →
ψ) → ∀x(x = y →
(φ → ψ))) |
13 | 9, 12 | syl6 29 |
. . 3
⊢ ((¬ ∀x x = y ∧ x = y) → (ψ
→ ∀x(x = y → (φ
→ ψ)))) |
14 | 7, 13 | jad 154 |
. 2
⊢ ((¬ ∀x x = y ∧ x = y) → ((φ → ψ) → ∀x(x = y →
(φ → ψ)))) |
15 | 14 | ex 423 |
1
⊢ (¬ ∀x x = y →
(x = y
→ ((φ → ψ) → ∀x(x = y →
(φ → ψ))))) |