| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hbimdOLD | GIF version | ||
| Description: Obsolete proof of hbimd 1815 as of 16-Dec-2017. (Contributed by NM, 1-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbimd.1 | ⊢ (φ → ∀xφ) |
| hbimd.2 | ⊢ (φ → (ψ → ∀xψ)) |
| hbimd.3 | ⊢ (φ → (χ → ∀xχ)) |
| Ref | Expression |
|---|---|
| hbimdOLD | ⊢ (φ → ((ψ → χ) → ∀x(ψ → χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbimd.1 | . . . . 5 ⊢ (φ → ∀xφ) | |
| 2 | hbimd.2 | . . . . 5 ⊢ (φ → (ψ → ∀xψ)) | |
| 3 | 1, 2 | alrimih 1565 | . . . 4 ⊢ (φ → ∀x(ψ → ∀xψ)) |
| 4 | sp 1747 | . . . . . 6 ⊢ (∀xψ → ψ) | |
| 5 | hbn1 1730 | . . . . . 6 ⊢ (¬ ∀xψ → ∀x ¬ ∀xψ) | |
| 6 | 4, 5 | nsyl4 134 | . . . . 5 ⊢ (¬ ∀x ¬ ∀xψ → ψ) |
| 7 | 6 | con1i 121 | . . . 4 ⊢ (¬ ψ → ∀x ¬ ∀xψ) |
| 8 | con3 126 | . . . . 5 ⊢ ((ψ → ∀xψ) → (¬ ∀xψ → ¬ ψ)) | |
| 9 | 8 | al2imi 1561 | . . . 4 ⊢ (∀x(ψ → ∀xψ) → (∀x ¬ ∀xψ → ∀x ¬ ψ)) |
| 10 | 3, 7, 9 | syl2im 34 | . . 3 ⊢ (φ → (¬ ψ → ∀x ¬ ψ)) |
| 11 | pm2.21 100 | . . . 4 ⊢ (¬ ψ → (ψ → χ)) | |
| 12 | 11 | alimi 1559 | . . 3 ⊢ (∀x ¬ ψ → ∀x(ψ → χ)) |
| 13 | 10, 12 | syl6 29 | . 2 ⊢ (φ → (¬ ψ → ∀x(ψ → χ))) |
| 14 | hbimd.3 | . . 3 ⊢ (φ → (χ → ∀xχ)) | |
| 15 | ax-1 6 | . . . 4 ⊢ (χ → (ψ → χ)) | |
| 16 | 15 | alimi 1559 | . . 3 ⊢ (∀xχ → ∀x(ψ → χ)) |
| 17 | 14, 16 | syl6 29 | . 2 ⊢ (φ → (χ → ∀x(ψ → χ))) |
| 18 | 13, 17 | jad 154 | 1 ⊢ (φ → ((ψ → χ) → ∀x(ψ → χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |